Nothing Special   »   [go: up one dir, main page]

Skip to main content

Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic

  • Conference paper
Computer Science Logic (CSL 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4207))

Included in the following conference series:

Abstract

In a previous work we introduced Dual Light Affine Logic (DLAL) ([BT04]) as a variant of Light Linear Logic suitable for guaranteeing complexity properties on lambda-calculus terms: all typable terms can be evaluated in polynomial time and all Ptime functions can be represented. In the present work we address the problem of typing lambda-terms in second-order DLAL. For that we give a procedure which, starting with a term typed in system F, finds all possible ways to decorate it into a DLAL typed term. We show that our procedure can be run in time polynomial in the size of the original Church typed system F term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Atassi, V., Baillot, P., Terui, K.: Verification of Ptime reducibility for system F terms via Dual Light Affine Logic. Technical Report HAL ccsd-00021834 (July 2006)

    Google Scholar 

  2. Amadio, R.: Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae 65, 29–60 (2005)

    MATH  MathSciNet  Google Scholar 

  3. Asperti, A., Roversi, L.: Intuitionistic light affine logic. ACM Transactions on Computational Logic 3(1), 1–39 (2002)

    Article  MathSciNet  Google Scholar 

  4. Atassi, V.: Inférence de type en logique linéaire élémentaire. Master’s thesis, Université Paris 13 (2005)

    Google Scholar 

  5. Baillot, P.: Checking polynomial time complexity with types. In: Proceedings of IFIP TCS 2002, Montreal. Kluwer Academic Press, Dordrecht (2002)

    Google Scholar 

  6. Baillot, P.: Type inference for light affine logic via constraints on words. Theoretical Computer Science 328(3), 289–323 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bellantoni, S., Cook, S.: New recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-calculus. In: Proceedings LICS 2004. IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

  9. Baillot, P., Terui, K.: A feasible algorithm for typing in elementary affine logic. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 55–70. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Coppola, P., Dal Lago, U., Ronchi Della Rocca, S.: Elementary affine logic and the call-by-value lambda calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 131–145. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Coppola, P., Martini, S.: Typing lambda-terms in elementary logic with linear constraints. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Coppola, P., Ronchi Della Rocca, S.: Principal typing in Elementary Affine Logic. In: Hofmann, M.O. (ed.) TLCA 2003. LNCS, vol. 2701, pp. 90–104. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Danos, V., Joinet, J.-B.: Linear logic and elementary time. Information and Computation 183(1), 123–137 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Girard, J.-Y.: Light linear logic. Information and Computation 143, 175–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order functional programs. In: Proc. ACM POPL 2003 (2003)

    Google Scholar 

  17. Hofmann, M.: Linear types and non-size-increasing polynomial time computation. Information and Computation 183(1), 57–85 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Leivant, D., Marion, J.-Y.: Lambda-calculus characterisations of polytime. Fundamenta Informaticae 19, 167–184 (1993)

    MATH  MathSciNet  Google Scholar 

  19. Marion, J.-Y., Moyen, J.-Y.: Efficient first order functional program interpreter with time bound certifications. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS, vol. 1955, pp. 25–42. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  20. Terui, K.: Light Affine Lambda-calculus and polytime strong normalization. In: Proceedings LICS 2001. IEEE Computer Society, Los Alamitos (2001), Full version available at: http://research.nii.ac.jp/~terui

    Google Scholar 

  21. Terui, K.: Light affine set theory: a naive set theory of polynomial time. Studia Logica 77, 9–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Terui, K.: A translation of LAL into DLAL (preprint, 2004), http://research.nii.ac.jp/~terui

  23. Wells, J.B.: Typability and type checking in system F are equivalent and undecidable. Ann. Pure Appl. Logic 98(1-3) (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Atassi, V., Baillot, P., Terui, K. (2006). Verification of Ptime Reducibility for System F Terms Via Dual Light Affine Logic. In: Ésik, Z. (eds) Computer Science Logic. CSL 2006. Lecture Notes in Computer Science, vol 4207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11874683_10

Download citation

  • DOI: https://doi.org/10.1007/11874683_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45458-8

  • Online ISBN: 978-3-540-45459-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics