Nothing Special   »   [go: up one dir, main page]

Skip to main content

On Subspace Distance

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4142))

Included in the following conference series:

Abstract

As pattern recognition methods, subspace methods have attracted much attention in the fields of face, object and video-based recognition in recent years. In subspace methods, each instance is characterized by a subspace that is spanned by a set of vectors. Thus, the distance between instances reduces to the distance between subspaces. Herein, the subspace distance designing problem is considered mathematically. Any distance designed according the method presented here can be embedded into associated recognition algorithms. The main contributions in this paper include:

– Solving the open problem proposed by Wang, Wang and Feng (2005), that is, we proved that their dissimilarity is a distance;

– Presenting a general framework of subspace construction, concretely speaking, we pointed out a view that subspace distance also could be regarded as the classical distance in vector space;

– Proposing two types of kernel subspace distances;

– Comparing some known subspace (dis)similarities mathematically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Analysis and Machine Intelligence 25(2), 218–233 (2003)

    Article  Google Scholar 

  2. Birkhoff, G., Mac Lane, S.: A Survey of Modern Algebra (Akp Classics). AK Peters Ltd., Wellesley (1997)

    Google Scholar 

  3. Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. Journal of Optical Society of America A 14, 1724–1733 (1997)

    Google Scholar 

  4. Golub, G.H., Ye, Q.: An inverse free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems. SIAM Journal on Scientific Computing 24, 312–334 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Golub, G.H., Van Loan, C.F.: Matrix Computations, 2nd edn. The Johns Hopkins University Press, Baltimore, London (1989)

    MATH  Google Scholar 

  6. Hotelling, H.: Relations between two sets of variates. Biometrika 28(3/4), 321–377 (1936)

    Article  MATH  Google Scholar 

  7. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Recognition and Machine Intelligence 23(2), 228–233 (2001)

    Article  Google Scholar 

  8. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object representation. IEEE Trans. Pattern Recognition and Machine Intelligence 19, 696–710 (1997)

    Article  Google Scholar 

  9. Moghaddam, B.: Bayesian face recognition. Pattern Recognition 13(11), 1771–1782 (2000)

    Article  Google Scholar 

  10. Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans Neural Networks 12(2), 181–202 (2001)

    Article  Google Scholar 

  11. Oja, E.: Subspace Methods of Pattern Recognition. Research Studies Press, England (1983)

    Google Scholar 

  12. Seung, H.S., Lee, D.D.: The manifold ways of perception. Science 290, 2268–2269 (2000)

    Article  Google Scholar 

  13. Simard, P., Le Cun, Y., Dender, J.: Efficient pattern recognition using a new transformation distance. In: Hanson, S., Cowan, J., Giles, C. (eds.) Advances in Neural Information Processing Systems, pp. 50–58. Morgan Kaufman, San Mateo (1993)

    Google Scholar 

  14. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3, 72–86 (1991)

    Article  Google Scholar 

  15. Wang, L., Wang, X., Feng, J.: Intrapersonal subspace analysis with application to adaptive bayesian face recognition. Pattern Recognition 38, 617–621 (2005)

    Article  Google Scholar 

  16. Wang, L., Wang, X., Feng, J.: Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition. Pattern Recognition 39(3), 456–464 (2006)

    Article  MATH  Google Scholar 

  17. Wolf, L., Shashua, A.: Kernel principal angles for classification machines with applications to image sequence interpretation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2003)

    Google Scholar 

  18. Wolf, L., Shashua, A.: Learning over sets using kernel principal angles. Journal of Machine Learning Research 4(6), 913–931 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yamaguchi, O., Fukui, K., Maeda, K.: Face recognition using temporal image sequence. In: IEEE International Conference on Automatic Face & Gesture Recognition (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, X., Cheng, Q. (2006). On Subspace Distance. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867661_8

Download citation

  • DOI: https://doi.org/10.1007/11867661_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44894-5

  • Online ISBN: 978-3-540-44896-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics