Nothing Special   »   [go: up one dir, main page]

Skip to main content

Transmission Tomography Reconstruction Using Compound Gauss-Markov Random Fields and Ordered Subsets

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4142))

Included in the following conference series:

  • 1473 Accesses

Abstract

Emission tomography images are degraded due to the presence of noise and several physical factors, like attenuation and scattering. To remove the attenuation effect from the emission tomography reconstruction, attenuation correction factors (ACFs) are used. These ACFs are obtained from a transmission scan and it is well known that they are homogeneous within each tissue and present abrupt variations in the transition between tissues. In this paper we propose the use of compound Gauss Markov random fields (CGMRF) as prior distributions to model homogeneity within tissues and high variations between regions. In order to find the maximum a posteriori (MAP) estimate of the reconstructed image we propose a new iterative method, which is stochastic for the line process and deterministic for the reconstruction. We apply the ordered subsets (OS) principle to accelerate the image reconstruction. The proposed method is tested and compared with other reconstruction methods.

This work has been partially supported by ”Instituto de Salud Carlos III” projects FIS G03/185, and FIS PI040857 and by the ”Comisión Nacional de Ciencia y Tecnología under contract TIC2003-00880.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bai, C., Kinahan, P.E., Brasse, D., Comtat, C., Townsend, D.W.: Post-injection Single Photon Transmission Tomography with Ordered-Subset Algorithms for Whole-Body PET Imaging. IEEE Tr. Nucl. Sci. 49, 74–81 (2002)

    Article  Google Scholar 

  2. Bouman, C.A., Sauer, K.: A Generalized Gaussian Image Model for Edge-Preserving Map Estimation. IEEE Tr. Im. Proc. 2, 296–310 (1993)

    Article  Google Scholar 

  3. Byrne, C.L.: Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Tr. Im. Proc. 7, 100–109 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Erdogan, H., Fessler, J.A.: Monotonic Algorithms for Transmission Tomography. IEEE Tr. Med. Im. 18, 801–814 (1999)

    Article  Google Scholar 

  5. Fessler, J.A.: ASPIRE (A Sparse Precomputed Iterative Reconstruction Library), http://www.eecs.umich.edu/~fessler/aspire/index.html

  6. Geman, S., Geman, G.: Stochastic Relaxation, Gibbs Distributions, and the Bayesian restoration of Images. IEEE Tr. Patt. Anal. Mach. Intell. 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  7. Henk, R.E. (ed.): The Scientific Basis of Nuclear Medicine, 2nd edn., Mosby (1996)

    Google Scholar 

  8. Hsiao, I.-T., Rangarajan, A., Khurd, P., Gindi, G.: An Accelerated Convergent Ordered Subsets Algorithm for Emission Tomography. Phys. Med. Biol. 49, 2145–2156 (2004)

    Article  Google Scholar 

  9. Hudson, H.M., Larkin, R.S.: Accelerated Image Reconstruction Using Ordered Subsets of Projection Data. IEEE Tr. Med. Im. 4, 601–609 (1994)

    Article  Google Scholar 

  10. Jeng, F.C., Woods, J.W.: Simulated Annealing in Compound Gaussian Random Fields. IEEE Tr. Inform. Th. 36, 94–107 (1988)

    Article  MathSciNet  Google Scholar 

  11. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, Los Alamitos (1988)

    MATH  Google Scholar 

  12. Lee, S.-J.: Accelerated Deterministic Annealing Algorithms for Transmission CT Reconstruction Using Ordered Subsets. IEEE Tr. Nucl. Sci. 49, 2373–2380 (2002)

    Article  Google Scholar 

  13. López, A., Molina, R., Mateos, J., Katsaggelos, A.K.: SPECT Image Reconstruction Using Compound Prior Models. Int. J. Pattern Recognit. Artif. Intell. 16, 317–330 (2002)

    Article  Google Scholar 

  14. López, A., Molina, R., Katsaggelos, A.K.: Bayesian Reconstruction for Transmission Tomography with Scale Hyperparameter Estimation. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 455–462. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  15. Molina, R., Katsaggelos, A.K., Mateos, J., Hermoso, A., Segall, C.A.: Restoration of Severely Blurred High Range Images Using Stochastic and Deterministic Relaxation Algorithms in Compound Gauss-Markov Random Fields. Patt. Recogn. 33, 557–571 (2000)

    Article  Google Scholar 

  16. Molina, R., Mateos, J., Katsaggelos, A.K., Vega, M.: Bayesian Multichannel Image Restoration Using Compound Gauss-Markov Random Fields. IEEE Tr. Im. Proc. 12, 1642–1654 (2003)

    Article  Google Scholar 

  17. Oskoui-Fard, P., Stark, H.: Tomographic Image Reconstruction Using the Theory of Convex Projections. IEEE Tr. Med. Im. 7, 45–58 (1988)

    Article  Google Scholar 

  18. Ripley, B.: Spatial Statistic. Wiley, New York (1981)

    Book  Google Scholar 

  19. Takahashi, M., Ogawa, K.: Selection of Projection Set and the Ordered of Calculation in Ordered Subsets Expectation Maximization Method. IEEE Nucl. Scie. Symp. and Med. Imag. Conf. Rec. 2, 1408–1412 (1997)

    Google Scholar 

  20. Urabe, H., Ogawa, K.: Improvement of Reconstructed Images in Ordered Subsets Bayesian Reconstruction Method. IEEE Nucl. Scie. Symp. and Med. Imag. Conf. Rec. 2, 1342–1346 (1998)

    Google Scholar 

  21. Yu, D.F., Fessler, J.A.: Edge-preserving Tomographic Reconstruction with Nonlocal Regularization. IEEE Tr. Med. Im. 21, 159–173 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López, A., Martín, J.M., Molina, R., Katsaggelos, A.K. (2006). Transmission Tomography Reconstruction Using Compound Gauss-Markov Random Fields and Ordered Subsets. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4142. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867661_50

Download citation

  • DOI: https://doi.org/10.1007/11867661_50

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44894-5

  • Online ISBN: 978-3-540-44896-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics