Nothing Special   »   [go: up one dir, main page]

Skip to main content

Global Motion Estimation: Feature-Based, Featureless, or Both ?!

  • Conference paper
Image Analysis and Recognition (ICIAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4141))

Included in the following conference series:

Abstract

The approaches to global motion estimation have been naturally classified into one of two main classes: feature-based methods and direct (or featureless) methods. Feature-based methods compute a set of point correspondences between the images and, from these, estimate the parameters describing the global motion. Although the simplicity of the second step has made this approach rather appealing, the correspondence step is a quagmire and usually requires human supervision. In opposition, featureless methods attempt to estimate the global motion parameters directly from the image intensities, using complex nonlinear optimization algorithms. In this paper, we propose an iterative scheme that combines the feature-based simplicity with the featureless robustness. Our experiments illustrate the behavior of the proposed scheme and demonstrate its effectiveness by automatically building image mosaics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dufaux, F., Konrad, J.: Efficient, robust, and fast global motion estimation for video coding. IEEE Trans. on Image Processing 9(3), 497–501 (2000)

    Article  Google Scholar 

  2. Petrovic, N., Jojic, N., Huang, T.: Hierarchical video clustering. In: Proc. of IEEE Multimedia Signal Processing Workshop, Siena, Italy (2004)

    Google Scholar 

  3. Aguiar, P., Jasinschi, R., Moura, J., Pluempitiwiriyawej, C.: Content-based image sequence representation. In: Reed, T. (ed.) Digital Video Processing, ch. 2, pp. 7–72. CRC Press, Boca Raton (2004)

    Google Scholar 

  4. Mann, S., Piccard, R.: Video orbits of the projective group: a simple approach to featureless estimation of parameters. IEEE Trans. on Image Processing 6(9), 1281–1295 (1997)

    Article  Google Scholar 

  5. Kim, D., Hong, K.: Fast global registration for image mosaicing. In: Proc. of IEEE Int. Conf. Image Processing, Barcelona, Spain (2003)

    Google Scholar 

  6. Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge (1993)

    Google Scholar 

  7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Lee, J., Ra, J.: Block motion estimation based on selective integral projections. In: Proc. of IEEE Int. Conf. Image Processing, Rochester NY, USA (2002)

    Google Scholar 

  9. Reddy, B., Chattery, B.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. on Image Processing 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  10. Perez, P., Garcia, N.: Robust and accurate registration of images with unknown relative orientation and exposure. In: Proc. of IEEE Int. Conf. Image Processing, Genova, Italy (2005)

    Google Scholar 

  11. Shi, J., Tomasi, C.: Good features to track. In: IEEE Int. Conf. on Computer Vision and Pattern Recognition (1994)

    Google Scholar 

  12. Aguiar, P., Moura, J.: Image motion estimation – convergence and error analysis. In: Proc. of IEEE Int. Conf. on Image Processing, Thessaloniki, Greece (2001)

    Google Scholar 

  13. Altunbasak, Y., Merserau, R., Patti, A.: A fast parametric motion estimation algorithm with illumination and lens distortion correction. IEEE Trans. on Image Processing 12(4) (2003)

    Google Scholar 

  14. Pires, B., Aguiar, P.: Featureless global alignment of multiple images. In: Proc. of IEEE Int. Conf. Image Processing, Genova, Italy (2005)

    Google Scholar 

  15. Irani, M., Anandan, P.: About direct methods. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883, Springer, Heidelberg (2000)

    Google Scholar 

  16. Torr, P.: Feature based methods for structure and motion estimation. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) ICCV-WS 1999. LNCS, vol. 1883. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Rosenfeld, A. (ed.): Multiresolution Image Processing and Analysis. Springer Series in Information Sciences, vol. 12. Springer, Heidelberg (1984)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guerreiro, R.F.C., Aguiar, P.M.Q. (2006). Global Motion Estimation: Feature-Based, Featureless, or Both ?!. In: Campilho, A., Kamel, M.S. (eds) Image Analysis and Recognition. ICIAR 2006. Lecture Notes in Computer Science, vol 4141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11867586_66

Download citation

  • DOI: https://doi.org/10.1007/11867586_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44891-4

  • Online ISBN: 978-3-540-44893-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics