Abstract
We present a model for the numerical simulation of radio frequency (RF) ablation of tumors with mono- or bipolar probes. This model includes the electrostatic equation and a variant of the well-known bio-heat transfer equation for the distribution of the electric potential and the induced heat. The equations are nonlinearly coupled by material parameters that change with temperature, dehydration and damage of the tissue. A fixed point iteration scheme for the nonlinear model and the spatial discretization with finite elements are presented. Moreover, we incorporate the effect of evaporation of water from the cells at high temperatures using a predictor-corrector like approach. The comparison of the approach to a real ablation concludes the paper.
Chapter PDF
Similar content being viewed by others
Keywords
- Radio Frequency
- Radio Frequency Ablation
- Point Iteration
- Robin Boundary Condition
- Conjugate Gradient Solver
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
Stein, T.: Untersuchungen zur Dosimetrie der hochfrequenzstrominduzierten interstitiellen Thermotherapie in bipolarer Technik. Fortschritte in der Lasermedizin, vol. 22. Müller and Berlien (2000)
Tungjitkusolum, S., Staelin, S.T., Haemmerich, D., et al.: Three-dimensional finite-element analyses for radio-frequency hepatic tumor ablation. IEEE Trans. Biomed. Eng. 49, 3–9 (2002)
Welp, C., Werner, J.: Large vessel cooling in hepatic radiofrequency ablation: investigation on the influence of blood flow rate. IEEE Trans. Biomed. Eng. (submitted)
Deuflhard, P., Weiser, M., Seebaß, M.: A new nonlinear elliptic multilevel fem applied to regional hyperthermia. Comput. Vis. Sci. 3, 115–120 (2000)
Roggan, A.: Dosimetrie thermischer Laseranwendungen in der Medizin. Fortschritte in der Lasermedizin, vol. 16. Müller and Berlien (1997)
Jain, M.K., Wolf, P.D.: A three-dimensional finite element model of radiofrequency ablation with blood flow and its experimental validation. Ann. Biomed. Eng. 28, 1075–1084 (2000)
Preusser, T., Weihusen, A., Peitgen, H.O.: On the modelling of perfusion in the simulation of RF-ablation. In: Proceedings of Simulation and Visualization (SimVis), Magdeburg (2005)
Jain, R.K., Grantham, F.H., Gullion, P.M.: Blood flow and heat transfer in walker 256 mammary carcinoma. J. Natl. Cancer Inst. 69, 927–931 (1979)
Pennes, H.H.: Analysis of tissue and arterial blood temperatures in a resting forearm. J. Appl. Physiol. 1, 93–122 (1948)
Arrhenius, S.: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889)
LeVeque, R.J.: Wave propagation algorithms for multidimensional hyperbolic systems. J. Comp. Phys. 131, 327–353 (1997)
Schenk, A., Prause, G., Peitgen, H.O.: Efficient semiautomatic segmentation of 3D objects in medical images. In: Delp, S.L., DiGoia, A.M., Jaramaz, B. (eds.) MICCAI 2000. LNCS, vol. 1935, pp. 186–195. Springer, Heidelberg (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kröger, T. et al. (2006). Numerical Simulation of Radio Frequency Ablation with State Dependent Material Parameters in Three Space Dimensions. In: Larsen, R., Nielsen, M., Sporring, J. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. MICCAI 2006. Lecture Notes in Computer Science, vol 4191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11866763_47
Download citation
DOI: https://doi.org/10.1007/11866763_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44727-6
Online ISBN: 978-3-540-44728-3
eBook Packages: Computer ScienceComputer Science (R0)