Abstract
In this paper, we present a method of implementing the multi-continued fraction algorithm on a class of infinite multi-sequences. As applications of our implementing method, we get the linear complexity and minimal polynomial profiles of some non-periodic multi-sequences.
This work was supported in part by the National Science Foundation of China (NSFC) under Grants No.90604011.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berlekamp, E.R.: Algebraic Coding Theory. McGraw-Hill, New York (1968)
Massey, J.L.: Shift-register synthesis and BCH decoding. IEEE Trans. Inform. Theory IT-15(1), 122–127 (1969)
Sakata, S.: Extension of Berlekamp-Massey algorithm to N dimension. Inform. and Comput. 84, 207–239 (1990)
Feng, G.L., Tzeng, K.K.: A generalization of the Berlekamp-Massey algorithm for multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE Trans. Inform. Theory 37, 1274–1287 (1991)
Dai, Z., Wang, K., Ye, D.: m-Continued Fraction Expansions of Multi-Laurent Series. Advances in Mathematics (China) 33(2), 246–248 (2004)
Dai, Z., Wang, K., Ye, D.: Multi-continued fraction algorithm on multi-formal Laurent series. Acta Arithmetica 122(1), 1–16 (2006)
Niederreiter, H.: Sequences with Almost Perfect Linear Complexity Profile. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 37–51. Springer, Heidelberg (1988)
Xing, C.: Multi-sequences with Almost Perfect Linear Complexity Profile and Function Fields over Finite Fields. Journal of Complexity 16, 661–675 (2000)
Feng, X., Wang, Q., Dai, Z.: Multi-sequences with d-perfect property. In: Proceedings of the 2004 IEEE International Symposium on Information Theory (ISIT 2004), June 2004, p. 86 (2004)
Feng, X., Wang, Q., Dai, Z.: Multi-Sequences with d-Perfect Property. Journal of Complexity 21, 230–242 (2005)
Dai, Z.-D., Imamura, K., Yang, J.-H.: Asymptotic Behavior of Normalized Linear Complexity of Multi-sequences. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 129–142. Springer, Heidelberg (2005)
Dai, Z., Feng, X.: Multi- Continued Fraction Algorithm and Generalized B-M Algorithm over F 2. In: Helleseth, T., Sarwate, D., Song, H.-Y., Yang, K. (eds.) SETA 2004. LNCS, vol. 3486, pp. 113–117. Springer, Heidelberg (2005)
Feng, X., Dai, Z.: The Expected value of the Normalized linear complexity of 2-dimensional binary sequences. In: Proceedings (Extended Abstracts) of 2004 International Conference on Sequences and Their Applications (SETA 2004), October 24-28, 2004, pp. 24–28 (2004)
Wang, Q., Dai, Z.: The Proof of the Non-optimality of JPA and MJPA for Multi-formal Laurent Series. Jounal of the Graduate School of the Chinese Academy of Sciences 22(1), 51–58 (2005) (in Chinese)
Feng, K., Wang, F.: The Jacobi-Perron Algorithm on Function Fields. Algebra Colloq. 1, 149–158 (1994)
Ito, S., Fujii, J., Higashino, H., Yasutomi, S.-I.: On Simultaneous Approximation to (α, α 2) with α 3 + k α− 1 = 0. Jounal of Number Theory 99, 255–283 (2003)
Inoue, K., Nakada, H.: The modified Jacobi-Perron Algorithm over F q (X)d. Tokyo Journal of Mathematics 26(2), 447–470 (2003)
Weiss, E.: Algebraic Number Theory. McGraw Hill, New York (1963)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Q., Wang, K., Dai, Z. (2006). Implementation of Multi-continued Fraction Algorithm and Application to Multi-sequence Linear Synthesis. In: Gong, G., Helleseth, T., Song, HY., Yang, K. (eds) Sequences and Their Applications – SETA 2006. SETA 2006. Lecture Notes in Computer Science, vol 4086. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11863854_21
Download citation
DOI: https://doi.org/10.1007/11863854_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-44523-4
Online ISBN: 978-3-540-44524-1
eBook Packages: Computer ScienceComputer Science (R0)