Nothing Special   »   [go: up one dir, main page]

Skip to main content

Shape Matching by Variational Computation of Geodesics on a Manifold

  • Conference paper
Pattern Recognition (DAGM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4174))

Included in the following conference series:

Abstract

Klassen et al. [9] recently developed a theoretical formulation to model shape dissimilarities by means of geodesics on appropriate spaces. They used the local geometry of an infinite dimensional manifold to measure the distance dist(A,B) between two given shapes A and B. A key limitation of their approach is that the computation of distances developed in the above work is inherently unstable, the computed distances are in general not symmetric, and the computation times are typically very large. In this paper, we revisit the shooting method of Klassen et al. for their angle-oriented representation. We revisit explicit expressions for the underlying space and we propose a gradient descent algorithm to compute geodesics. In contrast to the shooting method, the proposed variational method is numerically stable, it is by definition symmetric, and it is up to 1000 times faster.

This work was supported by the German Research Foundation, grant #CR-250/1-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bergtholdt, M., Schnörr, C.: Shape Priors and Online Appearance Learning for Variational Segmentation and Object Recognition in Static Scenes. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 342–350. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. In: Grundlehren der Mathematischen Wissenschaften, vol. 315. Springer, Heidelberg (1997)

    Google Scholar 

  3. Chern, S., Chen, W., Lam, K.S.: Lectures on Differential Geometry. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  4. Cremers, D., Kohlberger, T., Schnörr, C.: Shape statistics in kernel space for variational image segmentation. Pattern Recognition 36(9), 1929–1943 (2003)

    Article  MATH  Google Scholar 

  5. Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level set segmentation. In: Paragios, N. (ed.) IEEE 2nd Int. Workshop on Variational, Geometric and Level Set Methods, Nice, pp. 169–176 (2003)

    Google Scholar 

  6. do Carmo, M.P.: Differential Geometry of Curves and Surfaces, 503 pages. Prentice-Hall, Englewood Cliffs (1976)

    MATH  Google Scholar 

  7. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998)

    MATH  Google Scholar 

  8. Klassen, E., Srivastava, A.: Geodesics Between 3D Closed Curves Using Path-Straightening. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 95–106. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2003)

    Article  Google Scholar 

  10. Marques, J.S., Abrantes, A.J.: Shape alignment – optimal initial point and pose estimation. Pattern Recognition Letters 18(1), 49–53 (1997)

    Article  Google Scholar 

  11. Michor, P., Mumford, D.: Riemannian geometries on spaces of plane curves. J. of the European Math. Society (2003)

    Google Scholar 

  12. Mokhtarian, F., Abbasi, S., Kittler, J.: Efficient and robust retrieval by shape content through curvature scale space (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidt, F.R., Clausen, M., Cremers, D. (2006). Shape Matching by Variational Computation of Geodesics on a Manifold. In: Franke, K., Müller, KR., Nickolay, B., Schäfer, R. (eds) Pattern Recognition. DAGM 2006. Lecture Notes in Computer Science, vol 4174. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11861898_15

Download citation

  • DOI: https://doi.org/10.1007/11861898_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-44412-1

  • Online ISBN: 978-3-540-44414-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics