Abstract
A subset of vertices D ⊆ V of a graph G = (V,E) is a dominating clique if D is a dominating set and a clique of G. The existence problem ‘Given a graph G, is there a dominating clique in G?’ is NP-complete, and thus both the Minimum and the Maximum Dominating Clique problem are NP-hard. We present an O(1.3390n) time algorithm that for an input graph on n vertices either computes a minimum dominating clique or reports that the graph has no dominating clique. The algorithm uses the Branch & Reduce paradigm and its time analysis is based on the Measure & Conquer approach. We also establish a lower bound of Ω(1.2599n) for the worst case running time of our algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cozzens, M.B., Kelleher, L.L.: Dominating cliques in graphs. Discrete Math. 86, 101–116 (1990)
Culberson, J., Gao, Y., Anton, C.: Phase Transitions of Dominating Clique Problem and Their Implications to Satisfiability Search. In: Proc. IJCAI 2005, pp. 78–83 (2005)
Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination – A case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 192–203. Springer, Heidelberg (2005)
Fomin, F.V., Grandoni, F., Kratsch, D.: Some new techniques in design and analysis of exact (exponential) algorithms. Bull. EATCS 87, 47–77 (2005)
Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (Exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004)
Garey, M.R., Johnson, D.S.: Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman and Co., San Francisco (1979)
Gaspers, S., Liedloff, M.: A Branch-and-Reduce Algorithm for Finding a Minimum Independent Dominating Set in Graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 78–89. Springer, Heidelberg (2006)
Grandoni, F.: A note on the complexity of minimum dominating set. J. Discrete Algorithms 4, 209–214 (2006)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of domination in graphs. Marcel Dekker Inc., New York (1998)
Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in graphs: Advanced Topics. Marcel Dekker Inc., New York (1998)
Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. Journal of SIAM, 196–210 (1962)
Iwama, K.: Worst-case upper bounds for ksat. Bull. EATCS 82, 61–71 (2004)
Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27, 119–123 (1988)
Kratsch, D.: Algorithms. In: Haynes, T., Hedetniemi, S., Slater, P. (eds.) Domination in Graphs: Advanced Topics, pp. 191–231. Marcel Dekker, New York (1998)
Lawler, E.L.: A note on the complexity of the chromatic number problem. Inform. Process. Lett. 5(3), 66–67 (1976)
Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
Randerath, B., Schiermeyer, I.: Exact algorithms for Minimum Dominating Set, Technical Report zaik-469, Zentrum fur Angewandte Informatik, Köln, Germany (April 2004)
Razgon, I.: Exact Computation of Maximum Induced Forest. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)
Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440 (1986)
Schöning, U.: Algorithmics in Exponential Time. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 36–43. Springer, Heidelberg (2005)
Tarjan, R., Trojanowski, A.: Finding a maximum independent set. SIAM J. Comput. 6(3), 537–546 (1977)
Villanger, Y.: Improved exponential-time algorithms for treewidth and minimum fill-in. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 800–811. Springer, Heidelberg (2006)
Woeginger, G.J.: Exact algorithms for NP-hard problems: A survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)
Woeginger, G.J.: Space and time complexity of exact algorithms: Some open problems. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 281–290. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kratsch, D., Liedloff, M. (2006). An Exact Algorithm for the Minimum Dominating Clique Problem. In: Bodlaender, H.L., Langston, M.A. (eds) Parameterized and Exact Computation. IWPEC 2006. Lecture Notes in Computer Science, vol 4169. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847250_12
Download citation
DOI: https://doi.org/10.1007/11847250_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39098-5
Online ISBN: 978-3-540-39101-2
eBook Packages: Computer ScienceComputer Science (R0)