Abstract
Emerging portable devices relay on DRAM/flash memory system to satisfy requirements on fast and large data storage and low-energy consumption. This paper presents a novel approach to reduce energy of memory system, which unlike others, lowers energy of refresh operation in DRAM. The approach is based on two key ideas: (1) DRAM-based flash cache that keeps dirty pages to reduce the number of accesses to flash memory; and (2) OS-controlled page allocation/aging to stop the refresh operations in banks, whose pages are clean and not accessed for a long time. Simulations show that by using this technique we can decrease the overall energy consumption of DRAM/flash memory on video applications by 8-26% while reducing the DRAM refresh energy by 59-74%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Weldon, T.: Memory subsystems for 2.5G cellular handsets, Micron Techn. Inc., Jedex, San Jose (2004), http://www.micron.com/products/dram/ddr2sdram/presentation.html
Vargas, O.: Minimum power consumption in mobile phone memory systems, Portable Design (2006)
Lee, H.G., Chang, N.: Low-energy heterogeneous non-volatile memory systems for mobile systems. J. of Low-Power Electronics 1(1), 52–62 (2005)
Samsung Electronics. NAND flash memory & SmartMedia data book (2002)
Park, C., Kang, J.U., Park, S.Y., Kim, J.S.: Energy aware demand paging on NAND flash-based embedded systems. In: Proc. ACM/IEEE Int. Symp. Low-Power Electronics and Design, pp. 338–343
Park, S., Lim, H., Chang, H., Sung, W.: Compressed swapping or NAND flash memory based embedded systems. In: Proc. the IEEE Workshop on Signal Processing Systems (SiPS) (2003)
Samsung Electronics, 128Mb DDR SDRAM Specification, Version 1.0, Rev.1.0 (November 2, 2000)
Lebeck, A.R., Fan, X., Zeng, H., Ellis, C.: Power-aware page allocation. In: Proc. 9th Int. Conf. on Architectural Support for Programming Languages and Operation System (ASPLOS IX) (November 2000)
Fan, X., Zeng, H., Ellis, C., Lebeck, A.R.: Memory controller policies for DRAM power management. In: Proc. ACM/IEEE Int. Symp. Low-Power Electronics and Design (2001)
Delauz, V., et al.: Scheduler-based DRAM energy power management. In: 39th ACM/IEEE DAC, pp. 697–702 (2002)
Huang, H., Shin, K., Lefurgy, C., Keller, T.: Improving Energy efficiency by making DRAM less randomly accessed. In: Proc. ACM/IEEE Int. Symp. Low-Power Electronics and Design (2005)
Ohsawa, T., Kai, K., Murakami, K.: Optimizing the DRAM refresh count for merged DRAM/logic LSIs. In: Proc. ACM/IEEE Int. Symp. Low-Power Electronics and Design, pp. 82–87 (1998)
Hwang, H.-R., Choi, J.-H., Jang, H.-S.: Sysem and method for performing partial array self-refresh operation in a semi-conductor memory device, US Patent, no. 20050041506 (February 24, 2005)
Takahashi, M., et al.: A 60-MHz 240-mW MPEG-4 videophone LSI with 16-Mb embedded DRAM. IEEE J. Solid-State Circuits 35(11), 1713–1721 (2000)
Mobile DRAM: The secret to longer life, MicronTechn. Inc., http://download.micron.com/pdf/flyers/mobile_sdram_flyer.pdf
Huang, H., Pillai, P., Shin, K.G.: Design and implementation of power-aware virtual memory. In: Proceedings of the 2003 USENIX Annual Technical Conf. (June 2003)
Burger, D., Austin, T., Bennet, S.: Evaluating future microprocessors- the superscalar tool set. Technical Report 1306, Univ. of Wisconsin-Madison, CSD (July 1996)
SA-110 Microprocessor, Technical Reference Manual, Intel Corporation (December 2000)
Lee, C., Potkonjak, M., Mangione-Smith, W.-H.: MediaBench: a tool for evaluating and synthesizing multimedia and communication systems. In: Proc. the IEEE Int. Symp. on Microarchitecture (1997)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Moshnyaga, V.G., Vo, H., Reinman, G., Potkonjak, M. (2006). Handheld System Energy Reduction by OS-Driven Refresh. In: Vounckx, J., Azemard, N., Maurine, P. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2006. Lecture Notes in Computer Science, vol 4148. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11847083_3
Download citation
DOI: https://doi.org/10.1007/11847083_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-39094-7
Online ISBN: 978-3-540-39097-8
eBook Packages: Computer ScienceComputer Science (R0)