Nothing Special   »   [go: up one dir, main page]

Skip to main content

Assortative Mating Drastically Alters the Magnitude of Error Thresholds

  • Conference paper
Parallel Problem Solving from Nature - PPSN IX (PPSN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4193))

Included in the following conference series:

Abstract

The error threshold of replication is an important notion of the quasispecies evolution model; it is a critical mutation rate (error rate) beyond which structures obtained by an evolutionary process are destroyed more frequently than selection can reproduce them. With mutation rates above this critical value, an error catastrophe occurs and the genomic information is irretrievably lost. Recombination has been found to reduce the magnitude of the error threshold in evolving viral quasispecies. Here, through a simulation model based on genetic algorithms, we incorporate assortative mating and explore its effect on the magnitude of error thresholds. We found, consistently on four fitness landscapes, and across a range of evolutionary parameter values, that assortative mating overcomes the shift toward lower error threshold magnitudes induced by recombination, on the other hand, dissortative mating drastically reduces the error threshold magnitude. These results have implications to both natural and artificial evolution: First, they support the hypothesis that assortative mating by itself may overcome some of the evolutionary disadvantages of sex in nature. Second, they suggest a critical interaction between mutation rates and mating strategies in evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boerlijst, M.C., Bonhoeffer, S., Nowak, M.A.: Viral quasi-species and recombination. Proc. Royal Soc. London B 263, 1577–1584 (1996)

    Article  Google Scholar 

  2. Bonhoeffer, S., Stadler, P.: Error thresholds on correlated fitness landscapes. J. Theor. Biol. 164, 359–372 (1993)

    Article  Google Scholar 

  3. Eigen, M.: Self-organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971)

    Article  Google Scholar 

  4. Eigen, M., McCaskill, J., Schuster, P.: Molecular quasi-species. J. Phys. Chem. 92, 6881–6891 (1988)

    Article  Google Scholar 

  5. Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization. Springer, Heidelberg (1979)

    Book  Google Scholar 

  6. Fisher, R.A.: The genetic theory of natural selection. Clarendon Press, Oxford (1930)

    Google Scholar 

  7. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  8. Jaffe, K.: On the adaptive value of some mate selection strategies. Acta Biotheoretica 1(47), 29–40 (1999)

    Article  Google Scholar 

  9. Jaffe, K.: Emergence and maintenance of sex among diploid organisms aided by assortative mating. Acta Biotheoretica 2(48), 137–147 (2000)

    Article  Google Scholar 

  10. Jaffe, K.: On sex, mate selection and evolution: an exploration. Comments on Theoretical Biology 2(7), 91–107 (2002)

    Article  Google Scholar 

  11. Kauffman, S.A.: The origins of order. Oxford University Press, Oxford (1993)

    Google Scholar 

  12. Maynard Smith, J.: The evolution of sex. Cambridge University Press, Cambridge (1978)

    Google Scholar 

  13. Maynard Smith, J., Szathmary, E.: The major transitions in evolution. Oxford University Press, Oxford (1995)

    Google Scholar 

  14. Nowak, M., Schuster, P.: Error thresholds of replication in finite populations: Mutation frequencies and the onset of Muller’s ratchet. J. Theor. Biol. 137, 375–395 (1989)

    Article  Google Scholar 

  15. Ochoa, G.: Consensus sequence plots and error thresholds: Tools for visualising the structure of fitness landscapes. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 129–138. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Ochoa, G., Harvey, I.: Recombination and error thresholds in finite populations. In: Banzhaf, W., Reeves, C. (eds.) Foundations of Genetic Algorithms, vol. 5, Morgan Kauffman, San Francisco (1998)

    Google Scholar 

  17. Ochoa, G., Harvey, I., Buxton, H.: Error thresholds and their relation to optimal mutation rates. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 54–63. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  18. Ochoa, G.: Error thresholds and optimal mutation rates in genetic algorithms, Ph.D. thesis, School of Cognitive and Computing Sciences, University of Sussex, UK (2001)

    Google Scholar 

  19. Ochoa, G.: Error thresholds in genetic algorithms. Evolutionary Computation Journal 2(14) (2006)

    Google Scholar 

  20. Ochoa, G., Jaffe, K.: On sex, mate selection and the red queen. J. Theor. Biol. 1(199), 1–9 (1999)

    Article  Google Scholar 

  21. Swetina, J., Schuster, P.: Self-replication with errors, a model for polynucleotide replication. Phys. Rev. A [15] Stat. Phys. 45, 6038–6050 (1992)

    Google Scholar 

  22. Syswerda, G.: Uniform crossover in genetic algorithms. In: David Schaffer, J. (ed.) Proc. 3rd International Conference on Genetic Algorithms (George Mason University), pp. 2–9. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  23. van Nimwegen, E., Crutchfield, J.P.: Optimizing epochal evolutionary search: Population-size dependent theory, Tech. Report Preprint 98-06-046, Santa Fe Institute (1998)

    Google Scholar 

  24. Vose, M.D.: The simple genetic algorithm: foundations and theory. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  25. Wright, A.H., Rowe, J.E., Neil, J.R.: Analysis of the simple genetic algorithm on the single-peak and double-peak landscapes. In: Proceedings of the 2002 Congress on Evolutionary Computation CEC 2002, pp. 214–219. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  26. Wright, A.H., Rowe, J.E., Stephens, C.R., Poli, R.: Bistability in a gene pool GA with mutation. In: De Jong, K.A., Poli, R., Rowe, J.E. (eds.) Foundations of Genetic Algorithms, vol. 7, pp. 63–80. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ochoa, G., Jaffe, K. (2006). Assortative Mating Drastically Alters the Magnitude of Error Thresholds. In: Runarsson, T.P., Beyer, HG., Burke, E., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds) Parallel Problem Solving from Nature - PPSN IX. PPSN 2006. Lecture Notes in Computer Science, vol 4193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11844297_90

Download citation

  • DOI: https://doi.org/10.1007/11844297_90

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38990-3

  • Online ISBN: 978-3-540-38991-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics