Nothing Special   »   [go: up one dir, main page]

Skip to main content

Learning Manifolds in Forensic Data

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

Abstract

Chemical data related to illicit cocaine seizures is analyzed using linear and nonlinear dimensionality reduction methods. The goal is to find relevant features that could guide the data analysis process in chemical drug profiling, a recent field in the crime mapping community. The data has been collected using gas chromatography analysis. Several methods are tested: PCA, kernel PCA, isomap, spatio-temporal isomap and locally linear embedding. ST-isomap is used to detect a potential time-dependent nonlinear manifold, the data being sequential. Results show that the presence of a simple nonlinear manifold in the data is very likely and that this manifold cannot be detected by a linear PCA. The presence of temporal regularities is also observed with ST-isomap. Kernel PCA and isomap perform better than the other methods, and kernel PCA is more robust than isomap when introducing random perturbations in the dataset.

This work was supported by the Swiss National Science Foundation (grant no.105211-107862).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ratle, F., Terrettaz, A.L., Kanevski, M., Esseiva, P., Ribaux, O.: Pattern analysis in illicit heroin seizures: a novel application of machine learning algorithms. In: Proc. of the 14th European Symposium on Artificial Neural Networks. d-side publi. (2006)

    Google Scholar 

  2. Guëniat, O., Esseiva, P.: Le Profilage de l’Hëroïne et de la Cocaïne, Presses polytechniques et universitaires romandes, Lausanne (2005)

    Google Scholar 

  3. Esseiva, P., Dujourdy, L., Anglada, F., Taroni, F., Margot, P.: A methodology for illicit drug intelligence perspective using large databases. Forensic Science International 132, 139–152 (2003)

    Article  Google Scholar 

  4. Esseiva, P., Anglada, F., Dujourdy, L., Taroni, F., Margot, P., Du Pasquier, E., Dawson, M., Roux, C., Doble, P.: Chemical profiling and classification of illicit heroin by principal component analysis, calculation of inter sample correlation and artificial neural networks. Talanta 67, 360–367 (2005)

    Article  Google Scholar 

  5. Madden, M.G., Ryder, A.G.: Machine Learning Methods for Quantitative Analysis of Raman Spectroscopy Data. In: Proceedings of the International Society for Optical Engineering (SPIE 2002), vol. 4876, pp. 1130–1139 (2002)

    Google Scholar 

  6. O’Connell, M.L., Howley, T., Ryder, A.G., Madden, M.G.: Classification of a target analyte in solid mixtures using principal component analysis, support vector machines, and Raman spectroscopy. In: Proceedings of the International Society for Optical Engineering (SPIE 2005), vol. 4876, pp. 340–350 (2005)

    Google Scholar 

  7. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 1299–1319 (1998)

    Article  Google Scholar 

  8. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  9. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000)

    Article  Google Scholar 

  10. Jenkins, O.C., Matarić, M.J.: A spatio-temporal extension to isomap nonlinear dimension reduction. In: Proc. of the 21st International Conference on Machine Learning (2004)

    Google Scholar 

  11. Stork, D.G., Yom-Tov, E.: Computer Manual in MATLAB to accompany Pattern Classification. Wiley, Hoboken (2004)

    Google Scholar 

  12. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, NewYork (2001)

    MATH  Google Scholar 

  13. Kruskal, J.B., Wish, M.: Multidimensional Scaling. SAGE Publications, Thousand Oaks (1978)

    Google Scholar 

  14. Bengio, Y., Paiement, J.F., Vincent, P., Delalleau, O., Le Roux, N., Ouimet, M.: Out-of-samples extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering. Advances in Neural Information Processing Systems 16 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ratle, F., Terrettaz-Zufferey, AL., Kanevski, M., Esseiva, P., Ribaux, O. (2006). Learning Manifolds in Forensic Data. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_93

Download citation

  • DOI: https://doi.org/10.1007/11840930_93

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics