Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computer Aided Classification of Mammographic Tissue Using Independent Component Analysis and Support Vector Machines

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4132))

Included in the following conference series:

Abstract

In this paper a robust regions-of-suspicion (ROS) diagnosis system on mammograms, recognizing all types of abnormalities is presented and evaluated. A new type of statistical descriptors, based on Independent Component Analysis (ICA), derive the source regions that generate the observed ROS in mammograms. The reduced set of linear transformation coefficients, estimated from ICA after principal component analysis (PCA), compose the features vector that describes the observed regions in an effective way. The ROS are diagnosed using support-vector-machines (SVMs) with polynomial and radial basis function kernels. Taking into account the small number of training data, the PCA preprocessing step reduces the dimensionality of the features vector and consequently improves the classification accuracy of the SVM classifier. Extensive experiments using the Mammographic Image Analysis Society (MIAS) database have given high recognition accuracy above 87%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Martin, J., Moskowitz, M., Milbrath, J.: Breast cancer missed by mammography. AJR 132, 737 (1979)

    Google Scholar 

  2. Kalisher, L.: Factors influencing false negative rates in xero-mammography. Radiology 133, 297 (1979)

    Google Scholar 

  3. Tabar, L., Dean, B.P.: Teaching Atlas of Mammography, 2nd edn., Thieme, NY (1985)

    Google Scholar 

  4. Christoyianni, I., Dermatas, E., Kokkinakis, G.: Fast Detection of Masses in Computer- Aided Mammography. IEEE Signal Processing Magazine 17(1), 54–64 (2000)

    Article  Google Scholar 

  5. Sonka, M., Fitzpatrick, J.: Handbook of Medical Imaging. SPIE Press (2000)

    Google Scholar 

  6. Doi, K., Giger, M., Nishikawa, R., Schmidt, R. (eds.): Digital Mammography 1996. Elsevier, Amsterdam (1996)

    Google Scholar 

  7. Christoyianni, I., Koutras, A., Dermatas, E., Kokkinakis, G.: Computer Aided Diagnosis of Breast Cancer in Digitized Mammograms. Computerized Medical Imaging and Graphics 26(5), 309–319 (2002)

    Article  Google Scholar 

  8. Bazzani, A., Bevilacqua, A., Bollini, D., Brancaccio, R., Campanini, R., Lanconelli, N., Riccardi, A., Romani, D., Zamboni, G.: Automatic detection of clustered microcalcifications in digital mammograms using a SVM classifier. In: European Symposium on Artificial Neural Networks, Bruges, Belgium, pp. 195–200 (2000)

    Google Scholar 

  9. Wei, L., Yang, Y., Nishikawa, R.M., Jiang, Y.: A Study on Several Machine-Learning Methods for Classification of Malignant and Benign Clustered Microcalcifications. IEEE Transactions on Medical Imaging, 1–10 (January 2005)

    Google Scholar 

  10. Christoyianni, I., Dermatas, E., Kokkinakis, G.: Neural Classification of Abnormal Tissue in Digital Mammography Using Statistical Features of the Texture. IEEE Int. Conference on Electronics, Circuits and Systems 1, 117–120 (1999)

    Google Scholar 

  11. Schφlkopf, B., Burges, C.J.C., Smola, A.J.: Advances in Kernel Methods. In: Support Vector Learning, The MIT Press, London (1999)

    Google Scholar 

  12. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data mining and Knowledge Dicovery 2, 121–167 (1998)

    Article  Google Scholar 

  13. Lee, T.-W.: Independent Component Analysis: Theory and Applications. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  14. Bartlett, M., Lades, M., Sejnowski, T.: Independent component representation for face recognition. In: Proc. SPIE Symposium on Electronic Imaging: Science and Technology (1998)

    Google Scholar 

  15. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Englewoo Cliffs (1999)

    MATH  Google Scholar 

  16. http://peipa.essex.ac.uk/info/mias.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koutras, A., Christoyianni, I., Georgoulas, G., Dermatas, E. (2006). Computer Aided Classification of Mammographic Tissue Using Independent Component Analysis and Support Vector Machines. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840930_59

Download citation

  • DOI: https://doi.org/10.1007/11840930_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38871-5

  • Online ISBN: 978-3-540-38873-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics