Nothing Special   »   [go: up one dir, main page]

Skip to main content

Morphological Neural Networks and Vision Based Mobile Robot Navigation

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

Abstract

Morphological Associative Memories (MAM) have been proposed for image denoising and pattern recognition. We have shown that they can be applied to other domains, like image retrieval and hyperspectral image unsupervised segmentation. In both cases the key idea is that Morphological Autoassociative Memories (MAAM) selective sensitivity to erosive and dilative noise can be applied to detect the morphological independence between patterns. The convex coordinates obtained by linear unmixing based on the sets of morphological independent patterns define a feature extraction process. These features may be useful either for pattern classification. We present some results on the task of visual landmark recognition for a mobile robot self-localization task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Balkenius, C., Kopp, L.: Robust Self-Localization Using Elastic Templates. In: Lindberg, T. (ed.) Proceedings of Swedish Symposium on Image Analysis (1997)

    Google Scholar 

  2. Chatila, R.: Deliberation and Reactivity in Autonomous Mobile Robots. Robotics and Autonomous Systems 16, 197–211 (1995)

    Article  Google Scholar 

  3. DeSouza, G.N., Kak, A.C.: Vision for Mobile Robot Navigation: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)

    Article  Google Scholar 

  4. Fox, D.: Markov Localization: A Probabilistic Framework for Mobile Robot Localization and Navigdation, Ph. D. Thesis, University of Bonn, Germany (December 1998)

    Google Scholar 

  5. Fukunaga, K.: Introduction to statistical pattern recognition. Academic Press, Boston (1990)

    MATH  Google Scholar 

  6. Graña, M., Gallego, J.: Associative Mophological Memories for endmember induction. In: Proc. IGARSS 2003, Tolouse, France

    Google Scholar 

  7. Graña, M., Sussner, P., Ritter, G.: Associative Morphological Memories for Endmember Determination in Spectral Unmixing. In: Proc. FUZZ-IEEE (2003)

    Google Scholar 

  8. Graña, M., d’Anjou, A.: Feature Extraction by Linear Spectral Unmixing. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 692–697. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Graña, M., d’Anjou, A., Albizuri, X.: Morphological memories for feature extraction in hyperspectral images. In: Verleysen, M. (ed.) ESANN 2005, pp. 497–502. dFacto press (2005)

    Google Scholar 

  10. Gross, H.M., Koening, A., Boehme, H.J., Schroeter, C.: Vision-based Monte Carlo Self-localization for a Mobile Service Robot Acting as Shopping Assistant in a Home Store. In: Proceedings of the IEEE Intl. Conference on Intelligent Robots and Systems (2002)

    Google Scholar 

  11. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sciences 79, 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  12. Keshava, N., Mustard, J.F.: Spectral unimixing. IEEE Signal Proc. Mag. 19(1), 44–57 (2002)

    Article  Google Scholar 

  13. Livatino, S., Madsen, C.: Optimization of Robot Self-Localization Accuracy by Automatic Visual-Landmark Selection. In: Proceedings of 11th Scabdinavian Conference on Image Analysis (SCIA), pp. 501–506 (1999)

    Google Scholar 

  14. Livatino, S., Madsen, C.: Autonomous Robot Navigation with Automatic Learning of Visual Landmarks. In: International Symposium of Intelligent Robotic Systems, SIRSÕ 1999 (1999)

    Google Scholar 

  15. Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Proc. Mag. 19(1), 29–43 (2002)

    Article  Google Scholar 

  16. Marando, F., Piaggio, M., Scalzo, A.: Real Time Self Localization Using a Single Frontal Camera. In: International Symposium of Intelligent Robotic Systems, SIRSÕ 2001 (2001)

    Google Scholar 

  17. Ohya, A., Kosaka, A., Kak, A.C.: Vision-Based Navigation by a Mobile Robot with Obstacle Avoidance Using Single-Camera Vision and Ultrasonic Sensing. IEEE Journal of Robotics and Automation 14(6), 969–978 (1998)

    Article  Google Scholar 

  18. Olson, C.F.: Landmark Selection for Terrain Matching. In: Proceedings ICRA 2000 (2000)

    Google Scholar 

  19. Raducanu, B., Graa, M., Sussner, P.: Morphological Neural Networks for vision based self-localization. In: Proc. ICRA 2001

    Google Scholar 

  20. Raducanu, B., Graa, M., Sussner, P.: Steps towards one-shot vision-based self-localization. In: Duro, R., Santos, J., Graa, M. (eds.) Biologically inspired robot behavior engineering, pp. 265–294. Springer, Heidelberg (2002)

    Google Scholar 

  21. Raducanu, B., Graña, M., Albizuri, X.: Morphological scale spaces and associative morphological memories: results on robustness and practical applications. J. Math. Imaging and Vision 19(2), 113–122 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. Reuter, J.: Mobile Robot Self-Localization Using PDAB. In: Proceedings of International Conference on Robotics and Automation, ICRA (2000)

    Google Scholar 

  23. Ritter, G.X., Diaz-de-Leon, J.L., Sussner, P.: Morphological bidirectional associative memories. Neural Networks 12, 851–867 (1999)

    Article  Google Scholar 

  24. Ritter, G.X., Sussner, P., Diaz-de-Leon, J.L.: Morphological associative memories. IEEE Trans. on Neural Networks 9(2), 281–292 (1998)

    Article  Google Scholar 

  25. Ritter, G.X., Urcid, G., Iancu, L.: Reconstruction of patterns from moisy inputs using morphological associative memories. J. Math. Imaging and Vision 19(2), 95–112 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ritter, G.X., Urcid, G.: Lattice algebra approach to single-neuron computation. IEEE Trans Neural Networks 14(2), 282–295 (2003)

    Article  MathSciNet  Google Scholar 

  27. Rizzi, A., Duina, D., Inelli, S., Cassinis, R.: Unsupervised Matching of Visual Landmarks for Robotic Homing using Fourier-Mellin Transform. Robotics and Autonomous Systems 40, 131–138 (2002)

    Article  Google Scholar 

  28. Saffiotti, A., Wesley, L.P.: Perception-Based Self-Localization Using Fuzzy Location. In: Dorst, L., Voorbraak, F., van Lambalgen, M. (eds.) RUR 1995. LNCS, vol. 1093, pp. 368–385. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  29. Sekimori, D., Usui, T., Masutani, Y., Miyazaki, F.: High-Speed Obstacle Avoidance and Self-Localization for Mobile Robots Based on Omni-Directional Imaging of Floor Region. IPSJ Transactions on Computer Vision and Image Media, 42 NoSIG13-012 (2002)

    Google Scholar 

  30. Sussner, P.: Observations on Morphological Associative Memories and the Kernel Method. In: Proc. IJCNN 2001, Washington DC (July 2001)

    Google Scholar 

  31. Sussner, P.: Generalizing operations of binary autoassociative morphological memories using fuzzy set theory. J. Math. Imaging and Vision 19(2), 81–94 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Villaverde, I., Ibañez, S., Albizuri, F.X., Graña, M.: Morphological neural networks for real-time vision based self-localization. In: Abrham, A., Dote, Y., Furuhashi, T., Köpen, M., Ohuchi, A., Ohsawa, Y. (eds.) Soft Computing as transdisciplinary Science and Techonology, Proc. WSTST 2005. Advances in Soft Computing, pp. 70–79. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Villaverde, I., Graña, M., D’Anjou, A.: Morphological Neural Networks for Localization and Mapping. In: Proceedings of the IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA 2006), La Coruña (Spain), July 12-14 (2006) (On Print)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Villaverde, I., Graña, M., d’Anjou, A. (2006). Morphological Neural Networks and Vision Based Mobile Robot Navigation. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_91

Download citation

  • DOI: https://doi.org/10.1007/11840817_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics