Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

We study two related network design problems with two cost functions. In the buy-at-bulk k-Steiner tree problem we are given a graph G(V,E) with a set of terminals T ⊆ V including a particular vertex s called the root, and an integer k ≤ |T|. There are two cost functions on the edges of G, a buy cost \(b:E\longrightarrow {\mathbb{R}}^+\) and a distance cost \(r:E\longrightarrow {\mathbb{R}}^+\). The goal is to find a subtree H of G rooted at s with at least k terminals so that the cost ∑\(_{e\in{\it H}}\) b(e)+∑\(_{t\in{\it T}-{\it s}}\) dist(t,s) is minimize, where dist(t,s) is the distance from t to s in H with respect to the r cost. We present an O(log4 n)-approximation for the buy-at-bulk k-Steiner tree problem. The second and closely related one is bicriteria approximation algorithm for Shallow-light k-Steiner trees. In the shallow-light k-Steiner tree problem we are given a graph G with edge costs b(e) and distance costs r(e) over the edges, and an integer k. Our goal is to find a minimum cost (under b-cost) k-Steiner tree such that the diameter under r-cost is at most some given bound D. We develop an (O(logn),O(log3 n))-approximation algorithm for a relaxed version of Shallow-light k-Steiner tree where the solution has at least \(\frac{k}{8}\) terminals. Using this we obtain an (O(log2 n),O(log4 n))-approximation for the shallow-light k-Steiner tree and an O(log4 n)-approximation for the buy-at-bulk k-Steiner tree problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, M.: Hardness of Buy-at-Bulk Network Design. In: Proceedings of FOCS 2004, pp. 115–124 (2004)

    Google Scholar 

  2. Andrews, M., Zhang, L.: Approximation algorithms for access network design. Algorithmica 34(2), 197–215 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Awerbuch, B., Azar, Y.: Buy-at-bulk network design. In: Proceedings of FOCS 1997, pp. 542–547 (1997)

    Google Scholar 

  4. Awerbuch, B., Azar, Y., Blum, A., Vempala, S.: New approximation guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM Journal on Computing 28(1), 254–262 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bar-Ilan, J., Kortsarz, G., Peleg, D.: Generalized submodular cover problems and applications. Theoretical Computer Science 250, 179–200 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bartal, Y.: On approximating arbitrary matrices by tree metrics. In: Proceedings of STOC, pp. 161–168 (1998)

    Google Scholar 

  7. Blum, A., Ravi, R., Vempala, S.: A constant-factor approximation algorithm for the k MST problem (extended abstract). In: Proceedings of STOC 1996, pp. 442–448 (1996)

    Google Scholar 

  8. Charikar, M., Karagiozova, A.: On non-uniform multicommodity buy-at-bulk network design. In: Proceedings of STOC 2005, pp. 176–182 (2005)

    Google Scholar 

  9. Chekuri, C., Khanna, S., Naor, J.: A deterministic algorithm for the cost-distance problem. In: Proceedings of SODA 2001, pp. 232–233 (2001)

    Google Scholar 

  10. Chuzhoy, J., Gupta, A., Naor, J., Sinha, A.: On the approximability of some network design problems. In: Proceedings of SODA 2005, pp. 943–951 (2005)

    Google Scholar 

  11. Chekuri, C., Hajiaghayi, M., Kortsarz, G., Salavatipour, M.: Approximation Algorithms for Non-Uniform Buy-at-Bulk Network Design Problems (submitted, 2006)

    Google Scholar 

  12. Cheriyan, J., Salman, F.S., Ravi, R., Subramanian, S.: Buy-at-bulk network design: Approximating the single-sink edge installation problem. SIAM Journal on Optimization 11(3), 595–610 (2000)

    MATH  MathSciNet  Google Scholar 

  13. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. Journal of Computer and System Sciences 69(3), 485–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29(3), 410–421 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Garg, N.: A 3-Approximation for the minimum tree spanning k vertices. In: Proceedings FOCS 1996, pp. 302–309 (1996)

    Google Scholar 

  16. Garg, N.: Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In: Proceedings of STOC 2005, pp. 396–402 (2005)

    Google Scholar 

  17. Guha, S., Meyerson, A., Munagala, K.: A constant factor approximation for the single sink edge installation problems. In: Proceedings of STOC 2001, pp. 383–388 (2001)

    Google Scholar 

  18. Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement and network design problems. In: Proceedings of FOCS 2001, pp. 603–612 (2001)

    Google Scholar 

  19. Gupta, A., Kumar, A., Pal, M., Roughgarden, T.: Approximation Via Cost-Sharing: A Simple Approximation Algorithm for the Multicommodity Rent-or-Buy Problem. In: Proceedings of FOCS 2003, pp. 606–617 (2003)

    Google Scholar 

  20. Gupta, A., Kumar, A., Roughgarden, T.: Simpler and better approximation algorithms for network design. In: Proceedings STOC 2003, pp. 365–372 (2003)

    Google Scholar 

  21. Hajiaghayi, M.T., Jain, K.: The Prize-Collecting Generalized Steiner Tree Problem via a new approach of Primal-Dual Schema. In: Proceedings of SODA 2006, pp. 631–640 (2006)

    Google Scholar 

  22. Hassin, R.: Approximation schemes for the restricted shortest path problem. Mathematics of Operations Research 17(1), 36–42 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hassin, R., Levin, A.: Minimum Restricted Diameter Spanning trees. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 175–184. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  24. Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9, 256–278 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kumar, A., Gupta, A., Roughgarden, T.: A Constant-Factor Approximation Algorithm for the Multicommodity Rent-or-Buy Problem. In: Proceedings of FOCS 2002, pp. 333–342 (2002)

    Google Scholar 

  26. Marathe, M., Ravi, R., Sundaram, R., Ravi, S.S., Rosenkrantz, D., Hunt, H.: Bicriteria network design problems. J. Algorithms 28(1), 141–171 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meyerson, A., Munagala, K., Plotkin, S.: Cost-Distance: Two Metric Network Design. In: Proceedings of FOCS 2000, pp. 383–388 (2000)

    Google Scholar 

  28. Moss, A., Rabani, Y.: Approximation algorithms for constrained node weighted steiner tree problems. In: Proceedings of STOC 2001, pp. 373–382 (2001)

    Google Scholar 

  29. Ravi, R., Sundaram, R., Marathe, M.V., Rosenkrantz, D.J., Ravi, S.: Spanning trees short or small. SIAM Journal on Discrete Mathematics 9(2), 178–200 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hajiaghayi, M.T., Kortsarz, G., Salavatipour, M.R. (2006). Approximating Buy-at-Bulk and Shallow-Light k-Steiner Trees. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2006 2006. Lecture Notes in Computer Science, vol 4110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11830924_16

Download citation

  • DOI: https://doi.org/10.1007/11830924_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38044-3

  • Online ISBN: 978-3-540-38045-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics