Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4155))

Abstract

In this paper we investigate the computational complexity of combinatorial problems with givens, i.e., partial solutions, and where a unique solution is required. Examples for this article are taken from the games of Sudoku, N-queens and related games. We will show the computational complexity of many decision and search problems related to Sudoku, a number of similar games and their generalization. Furthermore, we propose a logical description of several such problems that can lead to a formulation in the language of Quantified Boolean Formulae (QBF) and, hence, their mechanization via a QBF solver. Some experiments on finding the minimum number of givens necessary/sufficient to guarantee uniqueness of solution are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 15.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beame, P., Cook, S., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative complexity of NP search problems. Journal of Computer and System Sciences 57(1), 3–19 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Blass, A., Gurevich, Y.: On the unique satisfiability problem. Information and Computation 55(1-3), 80–88 (1982)

    MATH  MathSciNet  Google Scholar 

  3. Cadoli, M., Schaerf, A.: Compiling problem specifications into SAT. Artificial Intelligence 162, 89–120 (2005)

    Article  MathSciNet  Google Scholar 

  4. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified boolean formulae and its experimental evaluation. Journal of Automated Reasoning 28, 101–142 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dechter, R.: Constraint Networks (Survey), pp. 276–285. John Wiley & Sons, Inc., Chichester (1992)

    Google Scholar 

  6. Fagin, R.: Generalized First-Order Spectra and Polynomial-Time Recognizable Sets. In: Karp, R.M. (ed.) Complexity of Computation, pp. 43–74. AMS (1974)

    Google Scholar 

  7. Gent, I.P., Walsh, T.: Csplib: A benchmark library for constraints. Technical report, Technical report APES-09-1999. A shorter version appears in the Proceedings of the 5th International Conference on Principles and Practices of Constraint Programming, CP 1999 (1999), Available from: http://csplib.cs.strath.ac.uk/

  8. Johnson, D.S.: A catalog of complexity classes. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 2, vol. A, pp. 67–161. Elsevier Science Publishers (North-Holland), Amsterdam (1990)

    Google Scholar 

  9. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and computational complexity. Theoretical Computer Science 81, 317–324 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the Thirtyeighth Conference on Design Automation (DAC 2001), pp. 530–535. ACM Press, New York (2001)

    Chapter  Google Scholar 

  11. Stockmeyer, L.J.: The polynomial-time hierarchy. Theoretical Computer Science 3, 1–22 (1976)

    Article  MathSciNet  Google Scholar 

  12. Van Hentenryck, P.: The OPL Optimization Programming Language. The MIT Press, Cambridge (1999)

    Google Scholar 

  13. Yato, T., Seta, T.: Complexity and completeness of finding another solution and its application to puzzles (2002), Available at: http://www.phil.uu.nl/~oostrom/cki20/02-03/japansepuzzles/ASP.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cadoli, M., Schaerf, M. (2006). Partial Solutions with Unique Completion. In: Stock, O., Schaerf, M. (eds) Reasoning, Action and Interaction in AI Theories and Systems. Lecture Notes in Computer Science(), vol 4155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11829263_6

Download citation

  • DOI: https://doi.org/10.1007/11829263_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37901-0

  • Online ISBN: 978-3-540-37902-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics