Nothing Special   »   [go: up one dir, main page]

Skip to main content

Clustering-Based Materialized View Selection in Data Warehouses

  • Conference paper
Advances in Databases and Information Systems (ADBIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4152))

Abstract

Materialized view selection is a non-trivial task. Hence, its complexity must be reduced. A judicious choice of views must be cost-driven and influenced by the workload experienced by the system. In this paper, we propose a framework for materialized view selection that exploits a data mining technique (clustering), in order to determine clusters of similar queries. We also propose a view merging algorithm that builds a set of candidate views, as well as a greedy process for selecting a set of views to materialize. This selection is based on cost models that evaluate the cost of accessing data using views and the cost of storing these views. To validate our strategy, we executed a workload of decision-support queries on a test data warehouse, with and without using our strategy. Our experimental results demonstrate its efficiency, even when storage space is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, S., Chaudhuri, S., Narasayya, V.R.: Automated selection of materialized views and indexes in SQL databases. In: 26th International Conference on Very Large Data Bases (VLDB 2000), Cairo, Egypt, pp. 496–505 (2000)

    Google Scholar 

  2. Baralis, E., Paraboschi, S., Teniente, E.: Materialized views selection in a multidimensional database. In: 23rd International Conference on Very Large Data Bases (VLDB 1997), Athens, Greece, pp. 156–165 (1997)

    Google Scholar 

  3. Baril, X., Bellahsene, Z.: Selection of materialized views: a cost-based approach. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 665–680. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Cardenas, A.F.: Analysis and performance of inverted data base structures. Communication in ACM 18(5), 253–263 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chan, G.K.Y., Li, Q., Feng, L.: Design and selection of materialized views in a data warehousing environment: A case study. In: 2nd ACM international workshop on Data warehousing and OLAP (DOLAP 1999), Kansas City, USA, pp. 42–47 (1999)

    Google Scholar 

  6. Goldstein, J., Larson, P.: Optimizing queries using materialized views: A practical, scalable solution. In: ACM SIGMOD international conference on Management of data (SIGMOD 2001), Santa Barbara, USA, pp. 331–342 (2001)

    Google Scholar 

  7. Golfarelli, M., Rizzi, S.: A methodological framework for data warehouse design. In: 1st ACM international workshop on Data warehousing and OLAP (DOLAP 1998), New York, USA, pp. 3–9 (1998)

    Google Scholar 

  8. Gupta, H.: Selection of views to materialize in a data warehouse. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 98–112. Springer, Heidelberg (1996)

    Google Scholar 

  9. Gupta, H., Mumick, I.S.: Selection of views to materialize in a data warehouse. IEEE Transactions on Knowledge and Data Engineering 17(1), 24–43 (2005)

    Article  Google Scholar 

  10. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: ACM SIGMOD International Conference on Management of data (SIGMOD 1996), Montreal, Canada, pp. 205–216 (1996)

    Google Scholar 

  11. Jouve, P., Nicoloyannis, N.: KEROUAC: An algorithm for clustering categorical data sets with practical advantages. In: International Workshop on Data Mining for Actionable Knowledge (DMAK’2003, in conjunction with PAKDD 2003) (2003)

    Google Scholar 

  12. Jouve, P., Nicoloyannis, N.: A new method for combining partitions, applications for distributed clustering. In: International Workshop on Paralell and Distributed Machine Learning and Data Mining (ECML/PKDD 2003), pp. 35–46 (2003)

    Google Scholar 

  13. Kotidis, Y., Roussopoulos, N.: DynaMat: A dynamic view management system for data warehouses. In: ACM SIGMOD International Conference on Management of Data (SIGMOD 1999), Philadelphia, USA, pp. 371–382 (1999)

    Google Scholar 

  14. Nadeau, T.P., Teorey, T.J.: Achieving scalability in OLAP materialized view selection. In: 5th ACM International Workshop on Data Warehousing and OLAP (DOLAP 2002), McLean, USA (2002)

    Google Scholar 

  15. Rizzi, S., Saltarelli, E.: View materialization vs. indexing: Balancing space constraints in data warehouse design. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 502–519. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Shukla, A., Deshpande, P.M., Naughton, J.F.: Materialized view selection for multi-cube data models. In: Zaniolo, C., Grust, T., Scholl, M.H., Lockemann, P.C. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 269–284. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Sismanis, Y., Deligiannakis, A., Roussopoulos, N., Kotidis, Y.: Dwarf: shrinking the petacube. In: ACM SIGMOD International Conference on Management of Data (SIGMOD 2002), Madison, USA, pp. 464–475 (2002)

    Google Scholar 

  18. Smith, J.R., Li, C.-S., Jhingran, A.: A wavelet framework for adapting data cube views for OLAP. IEEE Transactions on Knowledge and Data Engineering 16(5), 552–565 (2004)

    Article  Google Scholar 

  19. Theodoratos, D., Xu, W.: Constructing search spaces for materialized view selection. In: 7th ACM international workshop on Data warehousing and OLAP (DOLAP 2004), Washington, USA (2004)

    Google Scholar 

  20. Transaction Processing Council. TPC Benchmark R Standard Specification (1999)

    Google Scholar 

  21. Uchiyama, H., Runapongsa, K., Teorey, T.J.: A progressive view materialization algorithm. In: 2nd ACM International Workshop on Data warehousing and OLAP (DOLAP 1999), Kansas City, USA, pp. 36–41 (1999)

    Google Scholar 

  22. Valluri, S.R., Vadapalli, S., Karlapalem, K.: View relevance driven materialized view selection in data warehousing environment. In: 30th Australasian conference on Database technologies, Melbourne, Australia, pp. 187–196 (2002)

    Google Scholar 

  23. Yao, S.B.: Approximating block accesses in database organizations. Communication in ACM 20(4), 260–261 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aouiche, K., Jouve, PE., Darmont, J. (2006). Clustering-Based Materialized View Selection in Data Warehouses. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds) Advances in Databases and Information Systems. ADBIS 2006. Lecture Notes in Computer Science, vol 4152. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11827252_9

Download citation

  • DOI: https://doi.org/10.1007/11827252_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37899-0

  • Online ISBN: 978-3-540-37900-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics