Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Population Adaptive Based Immune Algorithm for Solving Multi-objective Optimization Problems

  • Conference paper
Artificial Immune Systems (ICARIS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4163))

Included in the following conference series:

Abstract

The primary objective of this paper is to put forward a general framework under which clear definitions of immune operators and their roles are provided. To this aim, a novel Population Adaptive Based Immune Algorithm (PAIA) inspired by Clonal Selection and Immune Network theories for solving multi-objective optimization problems (MOP) is proposed. The algorithm is shown to be insensitive to the initial population size; the population and clone size are adaptive with respect to the search process and the problem at hand. It is argued that the algorithm can largely reduce the number of evaluation times and is more consistent with the vertebrate immune system than the previously proposed algorithms. Preliminary results suggest that the algorithm is a valuable alternative to already established evolutionary based optimization algorithms, such as NSGA II, SPEA and VIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ishida, Y.: Fully Distributed Diagnosis by PDP Learning Algorithm: Towards Immune Network PDP Model. In: Proc. of the IEEE International Joint Conference on Neural Networks, San Diego, USA, pp. 777–782 (1990)

    Google Scholar 

  2. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. In: Proc. Of IEEE Symposium on Research in Security and Privacy, Oakland, USA, pp. 202–212 (1994)

    Google Scholar 

  3. de Castro, L.N., Von Zuben, F.J.: aiNet: An Artificial Immune Network for Data Analysis. In: Abbass, H.A., Sarker, R.A., Newton, C.S. (eds.) Data Mining: A Heuristic Approach, pp. 231–259. Idea Group Publishing, USA (2001)

    Google Scholar 

  4. Timmis, J.: Artificial Immune Systems: A Novel Data Analysis Technique Inspired by the Immune Network Theory. Ph.D Dissertation, Department of Computer Science, University of Wales (2000)

    Google Scholar 

  5. de Castro, L.N., Timmis, J.: An Artificial Immune Network for Multimodal Function Op timization. In: Proc. Of the IEEE Congress on Evolutionary Computation (CEC 2002), Honolulu, Hawaii, vol. 1, pp. 699–704 (2002)

    Google Scholar 

  6. Kelsey, J., Timmis, J.: Immune Inspired Somatic Contiguous Hypermutation for Function Optimization. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 207–218. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Freschi, F.: Multi-Objective Artificial Immune System for Optimization in Electrical Engineering. Ph.D Thesis, Politecnico di Torino, Department of Electrical Engineering, Torino, Italy (2006)

    Google Scholar 

  8. Yoo, J., Hajela, P.: Immune Network Simulations in Multicriterion Design. Structural Optimization 18, 85–94 (1999)

    Google Scholar 

  9. Cruz Cortes, N., Coello Coello, C.A.: Multiobjective Optimization Using Ideas from the Clonal Selection Principle. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 158–170. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Coello Coello, C.A., Cruz Cortes, N.: Solving Multiobjective Optimization Problems Using an Artificial Immune System. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)

    Article  Google Scholar 

  11. Wang, X.L., Mahfouf, M.: ACSAMO: An Adaptive Multiobjective Optimization Algorithm using the Clonal Selection Principle. In: The First European Symposium on Nature-inspired Smart Information Systems, Albufeira, Portugal (2005)

    Google Scholar 

  12. Jiao, L., Gong, M., Shang, R., Du, H., Lu, B.: Clonal Selection with Immune Dominance and Anergy Based Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 474–489. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Burnet, F.M.: The Clonal Selection Theory of Acquired Immunity. Cambridge at the University Press, UK (1959)

    Google Scholar 

  14. Jerne, N.K.: Towards a Network Theory of the Immune System. Ann. Immunology (Inst. Pasteur) 125C, 373–389 (1974)

    Google Scholar 

  15. Perelson, A.S.: Immune Network Theory. Immunological Review 110, 5–36 (1989)

    Article  Google Scholar 

  16. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  17. Goldberg, D.E.: Genetic Algorithms for Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    Google Scholar 

  18. de Castro, L.N., Von Zuben, F.J.: Artificial Immune Systems: Part I-Basic Theory and Applications. Technical Report, TR-DCA 02/00. School of Computing and Electrical Engineering, State University of Campinas, Brazil (1999)

    Google Scholar 

  19. Farmer, J.D., Packard, N.H.: The Immune System, Adaptation, and Machine Learning. Physica 22D, 187–204 (1986)

    MathSciNet  Google Scholar 

  20. Smith, R.E., Dike, B.A., Stegmann, S.A.: Fitness Inheritance in Genetic Algorithms. In: Proc. of ACM Symposiums on Applied Computing (ACM 1995), pp. 345–350 (1995)

    Google Scholar 

  21. Zitzer, E., Thiele, L.: An Evolutionary Algorithm for Multi-objective Optimization: The Strength Pareto Approach. TIK-Report, No. 43. Computer Engineering and Communication Networks Lab (TIK), Swiss Federal Institute of Technology, Switzerland (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, J., Mahfouf, M. (2006). A Population Adaptive Based Immune Algorithm for Solving Multi-objective Optimization Problems. In: Bersini, H., Carneiro, J. (eds) Artificial Immune Systems. ICARIS 2006. Lecture Notes in Computer Science, vol 4163. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11823940_22

Download citation

  • DOI: https://doi.org/10.1007/11823940_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37749-8

  • Online ISBN: 978-3-540-37751-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics