Nothing Special   »   [go: up one dir, main page]

Skip to main content

Prediction of Equipment Maintenance Using Optimized Support Vector Machine

  • Conference paper
  • First Online:
Computational Intelligence (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4114))

Included in the following conference series:

Abstract

Failure can be prevented in time by prediction of equipment maintenance so as to promote reliability only if failures can be early predicted. Substantially, it can be boiled down to a pattern recognition problem. Recenty, support vector machine (SVM) becomes a hot technique in this area. When using SVM, how to simultaneously obtain the optimal feature subset and SVM parameters is a crucial problem. This study proposes a method for improving SVM performance in two aspects at one time: feature subset selection and parameter optimization. Fuzzy adaptive particle swarm optimization (FAPSO) is used to optimize both a feature subset and parameters of SVM simultaneously for predictive maintenance. Case analysis shows that this algorithm is scientific and efficient, and adapts to predictive maintenance management for any complicated equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, Y., Jiang, W., Zhu, C., Liu, J., Teng, W., Zhang, Y. (2006). Prediction of Equipment Maintenance Using Optimized Support Vector Machine. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence. ICIC 2006. Lecture Notes in Computer Science(), vol 4114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37275-2_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37275-2_69

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37274-5

  • Online ISBN: 978-3-540-37275-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics