Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy k-Nearest Neighbor Method for Protein Secondary Structure Prediction and Its Parallel Implementation

  • Conference paper
Computational Intelligence and Bioinformatics (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Included in the following conference series:

Abstract

Fuzzy k-nearest neighbor method is a generalization of nearest neighbor method, the simplest algorithm for pattern classification. One of the important areas for application of the pattern classification is the protein secondary structure prediction, an important topic in the field of bioinformatics. In this work, we develop a parallel algorithm for protein secondary structure prediction, based on the fuzzy k-nearest neighbor method, that uses evolutionary profile obtained from PSI-BLAST (Position Specific Iterative Basic Local Sequence Alignment Tool) as the feature vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kryshtafovych, A., Venclovas, C., Fidelis, K., Moult, J.: Progress over the First Decade of CASP Experiments. Proteins 61, 225–236 (2005)

    Article  Google Scholar 

  2. Lee, J., Kim, S.-Y., Joo, K., Kim, I., Lee, J.: Prediction of Protein Tertiary Structure using PROFESY, a Novel Method Based on Fragment Assembly and Conformational Space Annealing. Proteins 56, 704–714 (2004)

    Article  Google Scholar 

  3. Lee, J., Kim, S.-Y., Lee, J.: Protein Structure Prediction Based on Fragment Assembly and Parameter Optimization. Biophys. Chem. 115, 209–214 (2005)

    Article  Google Scholar 

  4. Lee, J., Kim, S.-Y., Lee, J.: Protein Structure Prediction Based on Fragment Assembly and Beta-strand Pairing Energy Function. J. Korean Phys. Soc. 46, 707–712 (2005)

    Google Scholar 

  5. Rost, B., Sander, C.: Prediction of Secondary Structure at Better than 70% Accuracy. J. Mol. Biol. 232, 584–599 (1993)

    Article  Google Scholar 

  6. Jones, D.: Protein Secondary Structure Prediction Based on Position-specific Scoring Matrices. J. Mol. Biol. 292, 195–202 (1999)

    Article  Google Scholar 

  7. Ouali, M., King, R.: Cascaded Multiple Classifiers for Secondary Structure Prediction. Protein Science 9, 1162–1176 (1999)

    Article  Google Scholar 

  8. Adamczak, R., Porollo, A., Meller, J.: Combining Prediction of Secondary Structure and Solvent accessibility in proteins. Proteins 59, 467–475 (2005)

    Article  Google Scholar 

  9. Hua, S., Sun, Z.: A Novel Method of Protein Secondary Structure Prediction with High Segment Overlap Measure: Support Vector Machine Approach. J. Mol. Biol. 308, 397–407 (2001)

    Article  Google Scholar 

  10. Kim, K., Park, H.: Protein Secondary Structure Prediction based on improved Support Vector Machines Approach. Protein Eng. 16, 553–560 (2003)

    Article  Google Scholar 

  11. Joo, K., Lee, J., Kim, S.-Y., Kim, I., Lee, S.J., Lee, J.: Profile-based Nearest Neighbor Method for Pattern Recognition. J. Korean Phys. Soc. 44, 599–604 (2004)

    Google Scholar 

  12. Joo, K., Kim, I., Lee, J., Kim, S.-Y., Lee, S.J., Lee, J.: Prediction of the Secondary Structure of Proteins Using PREDICT, a Nearest Neighbor Method on Pattern Space. J. Korean Phys. Soc. 45, 1441–1449 (2004)

    Google Scholar 

  13. Pollastri, G., McLysaght, A.: Porter: a new, Accurate Server for Protein Secondary Structure Prediction. Bioinformatics 21, 1719–1720 (2004)

    Article  Google Scholar 

  14. Jiang, F.: Prediction of Protein Secondary Structure with a Reliability Score Estimated by Local Sequence Clustering. Protein Eng. 16, 651–657 (2003)

    Article  Google Scholar 

  15. Salamov, A.A., Solovyev, V.V.: Protein Secondary Structure Prediction Using Local Alignments. J. Mol. Biol. 268, 31–35 (1997)

    Article  Google Scholar 

  16. Kim, H., Park, H.: Prediction of Protein Relative Solvent Accessibility with Support Vector Machines and Long-range Interaction 3D Local Descriptor. Proteins 54, 557–562 (2004)

    Article  Google Scholar 

  17. Kabsch, W., Sander, C.: Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-bonded and Geometrical Features. Biopolymers 22, 2577–2637 (1983)

    Article  Google Scholar 

  18. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a New Generation of Protein Database Search Programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  19. Keller, J.M., Gray, R., Givens, J.A.: A Fuzzy k-nearest Neighbor Algorithm. IEEE Trans. Systems Man Cybernet. 15, 580–585 (1985)

    Google Scholar 

  20. Sim, J.H., Kim, S.-Y., Lee, J.: Prediction of Protein Solvent Accessibility Using Fuzzy k-Nearest Neighbor Method. Bioinformatics 21, 2844–2849 (2005)

    Article  Google Scholar 

  21. Brenner, S.E., Koehl, P., Levitt, M.: The ASTRAL Compendium for Protein Structure and Sequence Analysis. Nucleic Acids Res. 28, 254–256 (2000)

    Article  Google Scholar 

  22. Koh, I.Y., Eyrich, V., Marti-Renom, M.A., Przybylski, D., Madhusudhan, M.S., Eswar, N., Grana, O., Pazos, F., Valencia, A., Sali, A., Rost, B.: EVA: Evaluation of Protein Structure Prediction Servers. Nucleic Acids Res. 31, 3311–3315 (2003)

    Article  Google Scholar 

  23. Zemla, A., Venclovas, C., Fidelis, K., Rost, B.: A Modified Definition of Sov, a Segment-Based Measurement for Protein Secondary Structure Prediction Assessment. Proteins 34, 220–223 (1999)

    Article  Google Scholar 

  24. Gorodkin, J.: Comparing two K-category Assignment by a K-category Correlation Coefficient. Comput. Biol. and Chem. 28, 367–374 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, SY., Sim, J., Lee, J. (2006). Fuzzy k-Nearest Neighbor Method for Protein Secondary Structure Prediction and Its Parallel Implementation. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_48

Download citation

  • DOI: https://doi.org/10.1007/11816102_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics