Nothing Special   »   [go: up one dir, main page]

Skip to main content

Study of Parametric Relation in Ant Colony Optimization Approach to Traveling Salesman Problem

  • Conference paper
Computational Intelligence and Bioinformatics (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Included in the following conference series:

Abstract

Presetting control parameters of algorithms are important to ant colony optimization (ACO). This paper presents an investigation into the relationship of algorithms performance and the different control parameter settings. Two tour building methods are used in this paper including the max probability selection and the roulette wheel selection. Four parameters are used, which are two control parameters of transition probability α andβ, pheromone decrease factor ρ, and proportion factor q 0 in building methods. By simulated result analysis, the parameter selection rule will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Colorni, A., Dorigo, M., Maniezzo, V.: An Investigation of Some Properties of an ‘Ant Algorith’. In: PPSN, pp. 515–526 (1992)

    Google Scholar 

  2. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant Algorithms for Distributed Discrete Optimization. Artificial Life 5, 137–172 (1995)

    Article  Google Scholar 

  3. Zhang, J., Henry, S.H., Chung, W.L.L.: Adaptive Genetic Algorithms using Clustering Technique. IEEE Trans. Evolutionary Computation (Accepted)

    Google Scholar 

  4. Zhang, J.: Chaotic Time Series Prediction using Lyapunov Exponents in Embedding Phase Space. Computer & Electrical Engineering 30(1), 1–15 (2004)

    Article  MATH  Google Scholar 

  5. Zhang, J., Lo, W.L., Henry, S.H.: Design and Optimization of Power Electronics Regulators Using Pseudo-Coevolutionary Genetic Algorithms. IEEE Trans. Systems, Man, and Cybernetics, Part C (In Press)

    Google Scholar 

  6. Huang, D.S., Horace, H.S.: Zeroing Polynomials Using Modi-fied Constrained Neural Network Approach. IEEE Trans. On Neural Networks 16(3), 721–732 (2005)

    Article  MathSciNet  Google Scholar 

  7. Huang, D.S., Zhao, W.B.: Determining the Centers of Radial Basis Probabilities Neural Networks by Recursive Orthogonal Least Square Algorithms. Applied Mathematics and Computation 162(1), 461–473 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Huang, D.S.: A Constructive Approach for Finding Arbitrary Rroots of Polynomials by Neural Network. IEEE Transactions on Neural Network 15(2), 477–491 (2004)

    Article  Google Scholar 

  9. Huang, D.S., Horace, H.S., Ip, C.Z.R., Wong, H.S.: Dilation Method for Finding Close Roots of Polynomials Based on Constrained Learning Neural Networks. Physics Letters A 309(5-6), 443–451 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach toTSP. IEEE Trans. Evol. Comput 1, 53–66 (1997)

    Article  Google Scholar 

  11. Gambardella, L.M., Dorigo, M.: Ant-Q: A Reinforcement Learning Approach to theTraveling Salesman Problem. In: ICML, pp. 252–260 (1995)

    Google Scholar 

  12. Dorigo, M., Caro, G.D.: Ant Colony Optimization: A New Meta-Heuristic. Evolutionary Computation, 1999. In: CEC 1999. Proceedings of the 1999 Congress, July 6-9, 1999 , vol. 2 (1999)

    Google Scholar 

  13. Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant System for Job-Shop Scheduling. Belgian Journal of Operations Research, Statistics and Computer Science, 39–54 (1993)

    Google Scholar 

  14. Zhang, J., Hu, X.M., Tan, X., Zhong, J.H., Huang, Q.: Implementation of an Ant Colony Optimization Technique for Job Shop Scheduling Problem. Transactions of the Institute of Measurement and Control 28(1), 1–16 (2006)

    Article  Google Scholar 

  15. Blum, C., Dorigo, M.: Search Bias in Ant Colony Optimization: On the Role of Competi-tion-Balanced Systems. IEEE Trans. Evol. Comput 9, 159–174 (2005)

    Article  Google Scholar 

  16. Kannan, S., Slochanal, S.M.R., Padhy, N.P.: Application and Compari-son of Metaheuristic Techniques to Generation Expansion Planning Problem. IEEE Trans. Power systems 20, 466–475 (2005)

    Article  Google Scholar 

  17. Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Col-ony of Cooperating Agents. IEEE Trans, Systems, Man, and Cybernetics-Part B Cybernetics 26, 19–41 (1996)

    Article  Google Scholar 

  18. Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon, J.B.: Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Trans. Evol. Comput. 9, 175–191 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luo, X., Yu, F., Zhang, J. (2006). Study of Parametric Relation in Ant Colony Optimization Approach to Traveling Salesman Problem. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_3

Download citation

  • DOI: https://doi.org/10.1007/11816102_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics