Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel ACO Algorithm with Adaptive Parameter

  • Conference paper
Computational Intelligence and Bioinformatics (ICIC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4115))

Included in the following conference series:

Abstract

ACO has been proved to be one of the best performing algorithms for NP-hard problems as TSP. Many strategies for ACO have been studied, but little theoretical work has been done on ACO’s parameters α and β, which control the relative weight of pheromone trail and heuristic value. This paper describes the importance and functioning of α and β, and draws a conclusion that a fixed β may not enable ACO to use both heuristic and pheromone information for solution when α= 1. Later, following the analysis, an adaptive β strategy is designed for improvement. Finally, a new ACO called adaptive weight ant colony system (AWACS) with the adaptive β and α= 1 is introduced, and proved to be more effective and steady than traditional ACS through the experiment based on TSPLIB test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant Algorithms for Discrete Optimization. Massachusetts Institute of Technology, Artificial Life 5, 137–172 (1999)

    Article  Google Scholar 

  2. Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approah to the Travelling Salesman Problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  3. Stützle, T., Hoos, H.H.: MAX-MIN Ant System. Future Gener. Comput. Syst. 16(8), 889–914 (2000)

    Article  Google Scholar 

  4. Gutjahr, W.J.: Ageneralized Convergence Result for the Graph-Based Ant System Metaheuristic. Tech. Report 99-09, Department of Statistics and Decision Support Systems, University of Vienna, Austria (1999)

    Google Scholar 

  5. Gutjahr, W.J.: Agraph-Based Ant System and Its Convergence. Future Gen. Comput. Systems 16(9), 873–888 (2000)

    Article  Google Scholar 

  6. Gutjahr, W.J.: ACO Algorithms with Guaranteed Convergence to the Optimal Solution. Information Processing Letters 82, 145–153 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Stützle, T., Dorigo, M.: A Short Convergence Proof for a Class of Ant Colony Optimization Algorithms. IEEE Transactions on Evolutionary Computation 6(4), 358–365 (2002)

    Article  Google Scholar 

  8. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theoretical Computer Science 344, 243–278 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Badr, A., Fahmy, A.: A Proof of Convergence for Ant Algorithms. Information Sciences 160, 267–279 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fidanova, S.: ACO Algorithm with Additional Reinforcement. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 292–293. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Fidanova, S.: Convergence Proof for a Monte Carlo Method for Combinatorial Optimization Problems. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3039, pp. 523–530. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Watanabe, I., Matsui, S.: Improving the Performance of ACO Algorithms by Adaptive Control of Candidate Set. Evolutionary Computation, 2003. In: CEC 2003. The 2003 Congress on 2 (8-12), pp. 1355–1362 (2003)

    Google Scholar 

  14. Pilat, M.L., White, T.: Using Genetic Algorithms to Optimize ACS-TSP. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 282–287. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon, J.B.: Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Transactions on evolutionary computation 9(2) (April 2005)

    Google Scholar 

  16. Dorigo, M., Gambardella, L.M.: Ant Colonies for the Traveling Salesman Problem. BioSystems 43, 73–81 (1997)

    Article  Google Scholar 

  17. Sim, K.M., Sun, W.H.: Ant Colony Optimization for Routing and Load-Balancing: Survey and New Directions. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans 33(5) (September 2003)

    Google Scholar 

  18. Blum, C., Dorigo, M.: Search Bias in Ant Colony Optimization: On the Role of Competition-Balanced Systems. IEEE Transactions on evolutionary computation 9(2) (April 2005)

    Google Scholar 

  19. Reinelt, G.: TSPLIB. A Traveling Salesman Problem Library. ORSA Journal on Computing 3(4), 376–384 (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huang, H., Yang, X., Hao, Z., Cai, R. (2006). A Novel ACO Algorithm with Adaptive Parameter. In: Huang, DS., Li, K., Irwin, G.W. (eds) Computational Intelligence and Bioinformatics. ICIC 2006. Lecture Notes in Computer Science(), vol 4115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11816102_2

Download citation

  • DOI: https://doi.org/10.1007/11816102_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37277-6

  • Online ISBN: 978-3-540-37282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics