Abstract
We give an exact deterministic algorithm for MAX-SAT. On input CNF formulas with constant clause density (the ratio of the number of clauses to the number of variables is a constant), this algorithm runs in \({\mathcal{O}}(c^n)\) time where c<2 and n is the number of variables. Worst-case upper bounds for MAX-SAT less than \({\mathcal{O}}(2^n)\) were previously known only for k-CNF formulas and for CNF formulas with small clause density.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arvind, V., Schuler, R.: The quantum query complexity of 0-1 knapsack and associated claw problems. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 168–177. Springer, Heidelberg (2003)
Bansal, N., Raman, V.: Upper bounds for MaxSat: Further improved. In: Aggarwal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 247–258. Springer, Heidelberg (1999)
Beame, P., Impagliazzo, R., Pitassi, T., Segerlind, N.: Memoization and DPLL: Formula caching proof systems. In: Proceedings of the 18th Annual IEEE Conference on Computational Complexity, CCC 2003, pp. 225–236 (2003)
Cai, L., Chen, J.: On fixed-parameter tractability and approximability of NP optimization problems. Journal of Computer and System Sciences 54(3), 465–474 (1997)
Chen, J., Kanj, I.: Improved exact algorithm for Max-Sat. Discrete Applied Mathematics 142(1-3), 17–27 (2004)
Dantsin, E., Gavrilovich, M., Hirsch, E.A., Konev, B.: MAX SAT approximation beyond the limits of polynomial-time approximation. Annals of Pure and Applied Logic 113(1-3), 81–94 (2001)
Graham, R., Knuth, D., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science, 2nd edn. Addison-Wesley, Reading (1994)
Hirsch, E.A.: Worst-case study of local search for MAX-k-SAT. Discrete Applied Mathematics 130(2), 173–184 (2003)
Karloff, H., Zwick, U.: A 7/8-approximation algorithm for MAX 3SAT? In: Proceedings of the 38th Annual IEEE Symposium on Foundations of Computer Science, FOCS 1997, pp. 406–415 (1997)
Mahajan, M., Raman, V.: Parameterizing above guaranteed values: Maxsat and maxcut: An algorithm for the satisfiability problem of formulas in conjunctive normal form. Journal of Algorithms 31(2), 335–354 (1999)
Monien, B., Speckenmeyer, E.: Upper bounds for covering problems. Technical Report Bericht Nr. 7/1980, Reihe Theoretische Informatik, Universität-Gesamthochschule-Paderborn (1980)
Niedermeier, R., Rossmanith, P.: New upper bounds for maximum satisfiability. Journal of Algorithms 36(1), 63–88 (2000)
Williams, R.: On computing k-CNF formula properties. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 330–340. Springer, Heidelberg (2004)
Zhang, H., Shen, H., Manyà, F.: Exact algorithms for MAX-SAT. Electronic Notes in Theoretical Computer Science 86(1) (May 2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dantsin, E., Wolpert, A. (2006). MAX-SAT for Formulas with Constant Clause Density Can Be Solved Faster Than in \(\mathcal{O}(2^n)\) Time. In: Biere, A., Gomes, C.P. (eds) Theory and Applications of Satisfiability Testing - SAT 2006. SAT 2006. Lecture Notes in Computer Science, vol 4121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814948_26
Download citation
DOI: https://doi.org/10.1007/11814948_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37206-6
Online ISBN: 978-3-540-37207-3
eBook Packages: Computer ScienceComputer Science (R0)