Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4121))

Abstract

In the present paper we introduce the class of linear CNF formulas generalizing the notion of linear hypergraphs. Clauses of a linear formula intersect in at most one variable. We show that SAT for the general class of linear formulas remains NP-complete. Moreover we show that the subclass of exactly linear formulas is always satisfiable. We further consider the class of uniform linear formulas and investigate conditions for the formula graph to be complete. We define a formula hierarchy such that one can construct a 3-uniform linear formula belonging to the ith level such that the clause-variable density is of Ω(2.5i − − 1) ∩O(3.2i − − 1). Finally, we introduce the subclasses LCNF ≥ k of linear formulas having only clauses of length at least k, and show that SAT remains NP-complete for LCNF ≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berge, C.: Hypergraphs. North-Holland, Amsterdam (1989)

    MATH  Google Scholar 

  2. Böhm, M., Speckenmeyer, E.: A Fast Parallel SAT-Solver – Efficient Workload Balancing. Annals of Mathematics and Artificial Intelligence 17, 381–400 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bollobas, B.: Combinatorics, Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  4. Erdös, P.: Problems and results in Graph Theory. Congressus Numerantium 15, 169–192 (1976)

    Google Scholar 

  5. Even, S., Kariv, O.: An O(n 2.5) Algorithm for Maximum Matching in General Graphs. In: Proc. of 16-th Annual Symposium on Foundations of Computer Science, pp. 100–112. IEEE, Los Alamitos (1975)

    Google Scholar 

  6. Franco, J., Gelder, A.v.: A perspective on certain polynomial-time solvable classes of satisfiability. Discrete Appl. Math. 125, 177–214 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hall, P.: On representatives of subsets. J. London Math. Soc. 10, 26–30 (1935)

    Article  MATH  Google Scholar 

  8. König, D.: Graphen und Matrizen. Math. Fiz. Lapok 38, 116–119 (1931)

    MATH  Google Scholar 

  9. Lindner, C.C., Rosa, A. (eds.): Topics on Steiner Systems, Annals of Discrete Math., vol. 7. North-Holland, Amsterdam (1980)

    Google Scholar 

  10. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyanski, L.: Determining Computational Complexity from Characteristic ‘Phase Transitions’. Nature 400, 133–137 (1999)

    Article  MathSciNet  Google Scholar 

  11. Palisse, R.: A short proof of Fisher’s inequality. Discrete Math. 111, 421–422 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Porschen, S., Speckenmeyer, E., Randerath, B.: On linear CNF formulas, Techn. Report zaik2006-520, Univ. Köln (2006)

    Google Scholar 

  13. Ryser, H.J.: An extension of a theorem of de Bruijn and Erdös on combinatorial designs. J. Algebra 10, 246–261 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ryser, H.J.: Combinatorial Mathematics, Carus Mathematical Monographs, Mathematical Association of America, vol. 14 (1963)

    Google Scholar 

  15. Tovey, C.A.: A Simplified NP-Complete Satisfiability Problem. Discrete Appl. Math. 8, 85–89 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wilson, R.M.: An existence theory for pairwise balanced designs, II. J. Combin. Theory A 13, 246–273 (1972)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Porschen, S., Speckenmeyer, E., Randerath, B. (2006). On Linear CNF Formulas. In: Biere, A., Gomes, C.P. (eds) Theory and Applications of Satisfiability Testing - SAT 2006. SAT 2006. Lecture Notes in Computer Science, vol 4121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814948_22

Download citation

  • DOI: https://doi.org/10.1007/11814948_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37206-6

  • Online ISBN: 978-3-540-37207-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics