Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Complete Random Jump Strategy with Guiding Paths

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2006 (SAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4121))

Abstract

The restart strategy can improve the effectiveness of SAT solvers for satisfiable problems. In 2002, we proposed the so-called random jump strategy, which outperformed the restart strategy in most experiments. One weakness shared by both the restart strategy and the random jump strategy is the ineffectiveness for unsatisfiable problems: A job which can be finished by a SAT solver in one day cannot not be finished in a couple of days if either strategy is used by the same SAT solver. In this paper, we propose a simple and effective technique which makes the random jump strategy as effective as the original SAT solvers. The technique works as follows: When we jump from the current position to another position, we remember the skipped search space in a simple data structure called “guiding path”. If the current search runs out of search space before running out of the allotted time, the search can be recharged with one of the saved guiding paths and continues. Because the overhead of saving and loading guiding paths is very small, the SAT solvers is as effective as before for unsatisfiable problems when using the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baptista, L., Margues-Silva, J.P.: Using Randomization and Learning to Solve Hard Real-World Instances of Satisfiability. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Baptista, L., Lynce, I., Marques-Silva, J.P.: Complete Search Restart Strategies for Satisfiability. In: IJCAI 2001 Workshop on Stochastic Search Algorithms (IJCAI-SSA) (August 2001)

    Google Scholar 

  3. Bayardo, R., Schrag, R.: Using CSP look-back techniques to solve exceptionally hard SAT instances. In: Proceedings of CP 1996 (1996)

    Google Scholar 

  4. Bennett, F.E., Du, B., Zhang, H.: Conjugate orthogonal diagonal latin squares with missing subsquares. In: Wallis, W. (ed.) Designs 2002: Further Computational and Constructive Design Theory, ch. 2, Kluwer Academic Publishers, Boston (2003)

    Google Scholar 

  5. Bennett, F.E., Zhang, H.: Latin squares with self-orthogonal conjugates. Discrete Mathematics 284, 45–55 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bohm, M., Speckenmeyer, E.: A fast parallel SAT-solver – Efficient Workload Balancing (1994), URL: http://citeseer.ist.psu.edu/51782.html

  7. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the Association for Computing Machinery 5(7), 394–397 (1962)

    MATH  MathSciNet  Google Scholar 

  9. Feldman, Y., Dershowitz, N., Hanna, Z.: Parallel Multithreaded Satisfiability Solver: Design and Implementation. Electronic Notes in Theoretical Computer Science 128, 75–90 (2005)

    Article  Google Scholar 

  10. Lynce, I., Baptista, L., Marques-Silva, J.P.: Stochastic Systematic Search Algorithms for Satisfiability. In: LICS Workshop on Theory and Applications of Satisfiability Testing (LICS-SAT) (June 2001)

    Google Scholar 

  11. Gomes, C.P., Selman, B., Crato, C.: Heavy-tailed Distributions in Combinatorial Search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 121–135. Springer, Heidelberg (1997)

    Google Scholar 

  12. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  13. Xu, Y., Zhang, H.: Frame self-orthogonal Mendelsohn triple systems. Acta Mathematica Sinica 20(5), 913–924 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhang, H.: Specifying Latin squares in propositional logic. In: Veroff, R. (ed.) Automated Reasoning and Its Applications, Essays in honor of Larry Wos, ch. 6, MIT Press, Cambridge (1997)

    Google Scholar 

  15. Zhang, H.: SATO: An efficient propositional prover. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 308–312. Springer, Heidelberg (1996)

    Google Scholar 

  16. Zhang, H.: A random jump strategy for combinatorial search. In: Proc. of Sixth International Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale, FL (2002)

    Google Scholar 

  17. Zhang, H.: A complete random jump strategy with guiding paths (full version) (2006), http://www.cs.uiowa.edu/~hzhang/crandomjump.pdf

  18. Zhang, H., Bonacina, M.P., Hsiang, H.: PSATO: a distributed propositional prover and its application to quasigroup problems. Journal of Symbolic Computation 21, 543–560 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang, H., Bennett, F.E.: Existence of some (3,2,1)–HCOLS and (3,2,1)–HCOLS. J. of Combinatoric Mathematics and Combinatoric Computing 22, 13–22 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Zhang, H., Stickel, M.: Implementing the Davis-Putnam method. J. of Automated Reasoning 24, 277–296 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zhu, L., Zhang, H.: Completing the spectrum of r-orthogonal latin squares. Discrete Mathematics 258 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, H. (2006). A Complete Random Jump Strategy with Guiding Paths. In: Biere, A., Gomes, C.P. (eds) Theory and Applications of Satisfiability Testing - SAT 2006. SAT 2006. Lecture Notes in Computer Science, vol 4121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814948_12

Download citation

  • DOI: https://doi.org/10.1007/11814948_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37206-6

  • Online ISBN: 978-3-540-37207-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics