Abstract
The problem of the computation of a distance between two probabilistic automata arises in a variety of statistical learning problems. This paper presents an exhaustive analysis of the problem of computing the L p distance between two automata. We give efficient exact and approximate algorithms for computing these distances for p even and prove the problem to be NP-hard for all odd values of p, thereby completing previously known hardness results. We also give an efficient algorithm for computing the Hellinger distance between unambiguous probabilistic automata. Our results include a general algorithm for the computation of the norm of an unambiguous probabilistic automaton based on a monoid morphism and efficient algorithms for the specific case of the computation of the L p norm. Finally, we also describe an efficient algorithm for testing the equivalence of two arbitrary probabilistic automata A 1 and A 2 based on Schützenberger’s standardization with a running time complexity of O(|Σ| (|A 1| + |A 2|)3), a significant improvement over the previously best algorithm reported for this problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Berlin (1988)
Bloom, S., Ésik, Z.: Iteration Theories. Springer, Berlin (1991)
Cortes, C., Mohri, M., Rastogi, A., Riley, M.: Distances between Probabilistic Automata. Preparation journal version (2006)
Cortes, C., Mohri, M., Rastogi, A., Riley, M.D.: Efficient Computation of the Relative Entropy of Probabilistic Automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 323–336. Springer, Heidelberg (2006)
Culik II, K., Kari, J.: Digital Images and Formal Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 599–616. Springer, Heidelberg (1997)
Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)
Eilenberg, S.: Automata, Languages and Machines, vol. A–B. Academic Press, London (1974-1976)
Eisner, J.: Expectation Semirings: Flexible EM for Finite-State Transducers. In: Proceedings of the ESSLLI Workshop on Finite-State Methods in NLP (2001)
Engebretsen, L., Holmerin, J.: Clique is hard to approximate within n 1 − o(1). In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 2–12. Springer, Heidelberg (2000)
Kuich, W., Salomaa, A.: Semirings, Automata, Languages. In: EATCS Monographs on Theoretical Computer Science, vol. 5. Springer, Berlin (1986)
Mohri, M.: Finite-State Transducers in Language and Speech Processing. Computational Linguistics 23(2) (1997)
Mohri, M.: Generic Epsilon-Removal and Input Epsilon-Normalization Algorithms for Weighted Transducers. International Journal of Foundations of Computer Science 13(1), 129–143 (2002)
Mohri, M.: Semiring Frameworks and Algorithms for Shortest-Distance Problems. Journal of Automata, Languages and Combinatorics 7(3), 321–350 (2002)
Paz, A.: Introduction to probabilistic automata. Academic Press, New York (1971)
Lyngsø, R.B., Pederson, C.N.S.: The Consensus String Problem and the Complexity of Comparing Hidden Markov Models. Journal of Computer and System Sciences 65(3), 545–569 (2002)
Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, Heidelberg (1978)
Schützenberger, M.-P.: On the definition of a family of automata. Information and Control 4 (1961)
Håstad, J.: Clique is hard to approximate within n 1 − ε. In: FOCS 1996: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, p. 627. IEEE Computer Society, Los Alamitos (1996)
Tzeng, W.-G.: A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata. Foundations of Computer Science (FOCS), 216–227 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cortes, C., Mohri, M., Rastogi, A. (2006). On the Computation of Some Standard Distances Between Probabilistic Automata. In: Ibarra, O.H., Yen, HC. (eds) Implementation and Application of Automata. CIAA 2006. Lecture Notes in Computer Science, vol 4094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11812128_14
Download citation
DOI: https://doi.org/10.1007/11812128_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-37213-4
Online ISBN: 978-3-540-37214-1
eBook Packages: Computer ScienceComputer Science (R0)