Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Computation of Some Standard Distances Between Probabilistic Automata

  • Conference paper
Implementation and Application of Automata (CIAA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4094))

Included in the following conference series:

Abstract

The problem of the computation of a distance between two probabilistic automata arises in a variety of statistical learning problems. This paper presents an exhaustive analysis of the problem of computing the L p distance between two automata. We give efficient exact and approximate algorithms for computing these distances for p even and prove the problem to be NP-hard for all odd values of p, thereby completing previously known hardness results. We also give an efficient algorithm for computing the Hellinger distance between unambiguous probabilistic automata. Our results include a general algorithm for the computation of the norm of an unambiguous probabilistic automaton based on a monoid morphism and efficient algorithms for the specific case of the computation of the L p norm. Finally, we also describe an efficient algorithm for testing the equivalence of two arbitrary probabilistic automata A 1 and A 2 based on Schützenberger’s standardization with a running time complexity of O(|Σ| (|A 1| + |A 2|)3), a significant improvement over the previously best algorithm reported for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Berlin (1988)

    MATH  Google Scholar 

  2. Bloom, S., Ésik, Z.: Iteration Theories. Springer, Berlin (1991)

    Google Scholar 

  3. Cortes, C., Mohri, M., Rastogi, A., Riley, M.: Distances between Probabilistic Automata. Preparation journal version (2006)

    Google Scholar 

  4. Cortes, C., Mohri, M., Rastogi, A., Riley, M.D.: Efficient Computation of the Relative Entropy of Probabilistic Automata. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 323–336. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Culik II, K., Kari, J.: Digital Images and Formal Languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 599–616. Springer, Heidelberg (1997)

    Google Scholar 

  6. Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J.: Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  7. Eilenberg, S.: Automata, Languages and Machines, vol. A–B. Academic Press, London (1974-1976)

    MATH  Google Scholar 

  8. Eisner, J.: Expectation Semirings: Flexible EM for Finite-State Transducers. In: Proceedings of the ESSLLI Workshop on Finite-State Methods in NLP (2001)

    Google Scholar 

  9. Engebretsen, L., Holmerin, J.: Clique is hard to approximate within n 1 − o(1). In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 2–12. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. In: EATCS Monographs on Theoretical Computer Science, vol. 5. Springer, Berlin (1986)

    Google Scholar 

  11. Mohri, M.: Finite-State Transducers in Language and Speech Processing. Computational Linguistics 23(2) (1997)

    Google Scholar 

  12. Mohri, M.: Generic Epsilon-Removal and Input Epsilon-Normalization Algorithms for Weighted Transducers. International Journal of Foundations of Computer Science 13(1), 129–143 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mohri, M.: Semiring Frameworks and Algorithms for Shortest-Distance Problems. Journal of Automata, Languages and Combinatorics 7(3), 321–350 (2002)

    MATH  MathSciNet  Google Scholar 

  14. Paz, A.: Introduction to probabilistic automata. Academic Press, New York (1971)

    MATH  Google Scholar 

  15. Lyngsø, R.B., Pederson, C.N.S.: The Consensus String Problem and the Complexity of Comparing Hidden Markov Models. Journal of Computer and System Sciences 65(3), 545–569 (2002)

    Article  MathSciNet  Google Scholar 

  16. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  17. Schützenberger, M.-P.: On the definition of a family of automata. Information and Control 4 (1961)

    Google Scholar 

  18. Håstad, J.: Clique is hard to approximate within n 1 − ε. In: FOCS 1996: Proceedings of the 37th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, p. 627. IEEE Computer Society, Los Alamitos (1996)

    Google Scholar 

  19. Tzeng, W.-G.: A Polynomial-Time Algorithm for the Equivalence of Probabilistic Automata. Foundations of Computer Science (FOCS), 216–227 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cortes, C., Mohri, M., Rastogi, A. (2006). On the Computation of Some Standard Distances Between Probabilistic Automata. In: Ibarra, O.H., Yen, HC. (eds) Implementation and Application of Automata. CIAA 2006. Lecture Notes in Computer Science, vol 4094. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11812128_14

Download citation

  • DOI: https://doi.org/10.1007/11812128_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37213-4

  • Online ISBN: 978-3-540-37214-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics