Nothing Special   »   [go: up one dir, main page]

Skip to main content

Data Summarization Approach to Relational Domain Learning Based on Frequent Pattern to Support the Development of Decision Making

  • Conference paper
Advanced Data Mining and Applications (ADMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4093))

Included in the following conference series:

Abstract

A new approach is needed to handle huge dataset stored in multiple tables in a very-large database. Data mining and Knowledge Discovery in Databases (KDD) promise to play a crucial role in the way people interact with databases, especially decision support databases where analysis and exploration operations are essential. In this paper, we present related works in Relational Data Mining, define the basic notions of data mining for decision support and the types of data aggregation as a means of categorizing or summarizing data. We then present a novel approach to relational domain learning to support the development of decision making models by introducing automated construction of hierarchical multi-attribute model for decision making. We will describe how relational dataset can naturally be handled to support the construction of hierarchical multi-attribute model by using relational aggregation based on pattern’s distance. In this paper, we presents the prototype of “Dynamic Aggregation of Relational Attributes” (hence called DARA) that is capable of supporting the construction of hierarchical multi-attribute model for decision making. We experimentally show these results in a multi-relational domain that shows higher percentage of correctly classified instances and illustrate set of rules extracted from the relational domains to support decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bezdek, J.C.: Some new indexes of cluster validiy. IEEE Trans. Syst., Man, Cybern. B 28, 301–315 (1998)

    Google Scholar 

  2. Marko, B.: 2001. Decision Support. In: Mladenic, D., Lavrač, N., Bohanec, M., Moyle, S. (eds.) Data Mining and Decision Support: Integration and Collaboration, Kluwer Aca. Publishers, Dordrecht (2003)

    Google Scholar 

  3. Dillon, W., Goldstein, M.: Multivariate analysis, pp. 157–208. John Wiley and Sons, Chichester (1984)

    Google Scholar 

  4. Džeroski, S., Blockeel, H., Kompare, B., Kramer, S., Pfahringer, B., Van Laer, W.: Experiments in Predicting Biodegradability. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, Springer, Heidelberg (1999)

    Google Scholar 

  5. Džeroski, S., Lavrač, N. (eds.): Relational Data mining. Springer, Heidelberg (2001)

    Google Scholar 

  6. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning Probabilistic relational models. In: Džeroski, S., Lavrač, N. (eds.) Relational Data mining, Springer, Heidelberg (2001)

    Google Scholar 

  7. Horvath, T., Wrobel, S., Bohnebeck, U.: Relational instance-based learning with lists and terms. Machine Learning 43(1/2), 53–80 (2001)

    Google Scholar 

  8. Kirsten, M., Wrobel, S., Horvath, T.: Distance based approaches to relational learning and clustering. In: Džeroski, S., Lavrač, N. (eds.) Relational Data mining, Springer, Heidelberg (2001)

    Google Scholar 

  9. Knobbe, A., De Haas, M., Siebes, A.: Propositionalization and aggregates. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 277–288. Springer, Heidelberg (2001)

    Google Scholar 

  10. Koller, D., Pfeffer, A.: Probabilistic frame-based systems. In: AAAI/IAAI, pp. 580–587 (1998)

    Google Scholar 

  11. Kramer, S., Lavrač, N., Flach, P.: Propositionalization approaches to relational data mining. In: Džeroski, S., Lavrač, N. (eds.) Relational Data mining, Springer, Heidelberg (2001)

    Google Scholar 

  12. Krogel, M.A., Rawles, S., Železny, F., Flach, P.A., Lavrač, N., Wrobel, S.: Comparative evaluation of approaches to propositionalization. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 197–214. Springer, Heidelberg (2003)

    Google Scholar 

  13. Muggleton, S.H., DeRaedt, L.: Inductive Logic programming: Theory and Methods. The Journal of Logic Programming 19 & 20, 629–680 (1994)

    Google Scholar 

  14. Muggleton, S.H.: Inverse Entailment and Progol. New Generation Computing 13, 245–286 (1995)

    Google Scholar 

  15. McQueen, J.: Some Methods of classification and analysis of multivariate observations. In: Proceedings of Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–293 (1967)

    Google Scholar 

  16. Perlich, C., Provost, F.: Aggregation-based feature invention and relational concept classes. In: Proceedings of the Ninth ACM International Conference on Knowledge Discovery and Data Mining (KDD) (2003)

    Google Scholar 

  17. Perlich, C., Provost, F.: ACORA: Distribution-based aggregation for relational learning from identifier attributes. Journal of Machine Learning (2005)

    Google Scholar 

  18. Propescul, A., Ungar, L.H., Lawrence, S., Pennock, D.M.: Structural Logistic Regression: Combining relational and statistical learning. In: Proceedings of the workshop on Multi-Relational Data Mining (MRDM-2002), University of Alberta, Edmonton, Canada, July 2002, pp. 130–141 (2002)

    Google Scholar 

  19. Srinivasan, A., King, R.D.: Feature Construction with Inductive Logic Programming: A Study of Quantitative Predictions of Biological Activity Aided by Structural Attributes. Data Mining and Knowledge Discovery 3(1), 37–57 (1999)

    Google Scholar 

  20. Srinivasan, A., King, R.D., Bristol, D.W.: An Assessment of ILP-Assisted Models for Toxicology and the PTE-3 Experiment. In: Džeroski, S., Flach, P.A. (eds.) ILP 1999. LNCS (LNAI), vol. 1634, Springer, Heidelberg (1999)

    Google Scholar 

  21. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  22. Salton, G., Michael, J.: McGill, Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)

    Google Scholar 

  23. Power, D.J.: Decision Support Systems Glossary (1999), http://DSSResources.COM/glossary/

  24. INSEAD, Decision Sciences. PhD Program Description (2003), http://www.insead.edu/phd/program/decision.htm

  25. Hillier, F.S., Lieberman, G.J.: Introduction to Operation Research. McGraw-Hill, New York (2000)

    Google Scholar 

  26. Clemen, R.T.: Making Hard Decisions: An introduction to Decision Analysis. Duxbury Press (1996)

    Google Scholar 

  27. Han, J., Kamber, M.: Data Mining: Concept and Techniques. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  28. Mallach, E.G.: Understanding Decision Support Systems and Expert Systems. Irwin, Burr Ridge (1994)

    Google Scholar 

  29. DAS, Decision Analysis Software (2001), http://faculty.fuqua.duke.edu/daweb/dasw.htm

  30. Younes, H.L.S.: Current tools for assisting intelligent agents in real-time decision making, MSc Thesis (2001), http://www-2.cs.cmu.edu/~lorens/papers/mscthesis.html

  31. Parmigiani, G.: Modelling in Medical Decision Making: A Bayesian Approach. John Wiley & Sons, Ltd., Chichester (2002)

    Google Scholar 

  32. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of the International Conference on Very Large Databases, Santiago de Chile, Chile (1994)

    Google Scholar 

  33. Watanabe, T., Suzuki, H., Takabayashi, L.: Application of prototypeline to chronic hepatitis data. In: Working core of ECML/PKDD 2003 Discovery Challenge, pp. 166–177 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alfred, R., Kazakov, D. (2006). Data Summarization Approach to Relational Domain Learning Based on Frequent Pattern to Support the Development of Decision Making. In: Li, X., Zaïane, O.R., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science(), vol 4093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811305_97

Download citation

  • DOI: https://doi.org/10.1007/11811305_97

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37025-3

  • Online ISBN: 978-3-540-37026-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics