Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Hierarchical Model of Web Graph

  • Conference paper
Advanced Data Mining and Applications (ADMA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4093))

Included in the following conference series:

  • 2278 Accesses

Abstract

The pages on the World Wide Web and their hyperlinks induce a huge directed graph – the Web Graph. Many models have been brought up to explain the static and dynamic properties of the graph. Most of them pay much attention to the pages without considering their essential relations. In fact, Web pages are well organized in Web sites as a tree hierarchy. In this paper, we propose a hierarchical model of Web graph which exploits both link structure and hierarchical relations of Web pages. The analysis of the model reveals many properties about the evolution of pages, sites and the relation among them.

This project is supported by National Foundation of Science of China (No.60473122).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kleinberg, J.: Authoritative sources in a hyperlinked enviroment. Journal of the ACM 46, 604–632 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brin, S., Lawrence Page, R., Winopgrad, T.: The pagerank citation ranking: Bring order to the web. Techinical report, Computer Science Department, Stanford University (1998)

    Google Scholar 

  3. Bollobás, B.: Random Graphs. Academic Press, London (1985)

    MATH  Google Scholar 

  4. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Proceedings of ACM Symposium on Theory of Computing, pp. 171–180 (2000)

    Google Scholar 

  5. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Structures Algorithms 18, 279–290 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: FOCS 2000: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Washington, p. 57. IEEE Computer Society, Los Alamitos (2000)

    Google Scholar 

  7. Bonato, A.: A survey of models of the web graph. In: López-Ortiz, A., Hamel, A.M. (eds.) CAAN 2004. LNCS, vol. 3405, pp. 159–172. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tompkins, A., Upfal, E.: The web as a graph. In: Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 1–10 (2000)

    Google Scholar 

  9. Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.: Graph structure in the web. Comput. Networks 33, 309–320 (2000)

    Article  Google Scholar 

  10. Bharat, K., Chang, B.W., Henzinger, M.R., Ruhl, M.: Who links to whom: Mining linkage between web sites. In: Proceedings of the 2001 IEEE International Conference on Data Mining, pp. 51–58 (2001)

    Google Scholar 

  11. Liu, G., Yu, Y., Han, J., Xue, G.: China web graph measurements and evolution. In: Zhang, Y., Tanaka, K., Yu, J.X., Wang, S., Li, M. (eds.) APWeb 2005. LNCS, vol. 3399, pp. 668–679. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  13. Albert, R., Jeong, H., Barabasi, A.-L.: Diameter of the world wide web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  14. Eiron, N., McCurley, K.S.: Locality, hierarchy, and birectionality in the web. In: Second Workshop on Algorithms and Models for the Web-graph (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Han, J., Yu, Y., Lin, C., Han, D., Xue, GR. (2006). A Hierarchical Model of Web Graph. In: Li, X., Zaïane, O.R., Li, Z. (eds) Advanced Data Mining and Applications. ADMA 2006. Lecture Notes in Computer Science(), vol 4093. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11811305_86

Download citation

  • DOI: https://doi.org/10.1007/11811305_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37025-3

  • Online ISBN: 978-3-540-37026-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics