Nothing Special   »   [go: up one dir, main page]

Skip to main content

What Evaluation Criteria Are Right for CCBR? Considering Rank Quality

  • Conference paper
Advances in Case-Based Reasoning (ECCBR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4106))

Included in the following conference series:

Abstract

Evaluation criteria for conversational CBR (CCBR) systems are important to guide development and tuning of new methods, and to enable practitioners to make informed decisions about which methods to use. Traditional criteria for evaluating CCBR performance by precision and efficiency provide useful information, but are limited by their focus on the single point at which a case is selected at the end of the system dialogue, and by their dependence on a model of the user’s case selection criteria. This paper begins by revisiting issues in the evaluation of CCBR systems, arguing for the value of assessing the quality of the intermediate dialogue before case selection. It then proposes an evaluation approach based on rank quality to provide a fuller picture of system performance, and illustrates with an empirical study the use of rank quality to illuminate characteristics of similarity assessment strategies for partially-specified cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watson, I.: Applying Case-Based Reasoning: Techniques for Enterprise Systems. Morgan Kaufmann, San Mateo (1997)

    MATH  Google Scholar 

  2. Aha, D., Breslow, L.: Refining conversational case libraries. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 267–278. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Bogaerts, S., Leake, D.: Facilitating CBR for incompletely-described cases: Distance metrics for partial problem descriptions. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 62–76. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning databases (1998)

    Google Scholar 

  5. McSherry, D.: Minimizing dialog length in interactive case-based reasoning. In: Proceedings of the seventeenth International Joint Conference on Artificial Intelligence (IJCAI 2001), pp. 993–998. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  6. Buchanan, B., Shortliffe, E.: Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading (1984)

    Google Scholar 

  7. Cheetham, W., Price, J.: Measures of solution accuracy in case-based reasoning systems. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 106–118. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Miller, R., Pople, H., Meyers, J.: Internist-i, an experimental computer-based diagnostic consultant for general internal medicine. New England Journal of Medicine 307(8), 468–476 (1982)

    Article  Google Scholar 

  9. McSherry, D.: Incremental relaxation of unsuccessful queries. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 331–345. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  10. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: Experiments in dynamic critiquing. In: IUI 2005: Proceedings of the 10th international conference on Intelligent user interfaces, pp. 175–182. ACM Press, New York (2005)

    Chapter  Google Scholar 

  11. Bogaerts, S., Leake, D.: IUCBRF: A framework for rapid and modular CBR system development. Technical Report TR 617, Computer Science Department, Indiana University, Bloomington, IN (2005)

    Google Scholar 

  12. McSherry, D.: Precision and recall in interactive case-based reasoning. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 392–406. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Gupta, K.M., Aha, D.W., Sandhu, N.: Exploiting taxonomic and causal relations in conversational case retrieval. In: Craw, S., Preece, A.D. (eds.) ECCBR 2002. LNCS (LNAI), vol. 2416, pp. 133–147. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Kohlmaier, A., Schmitt, S., Bergmann, R.: Evaluation of a similarity-based approach to customer-adaptive elect ronic sales dialogs (2001)

    Google Scholar 

  15. Voorhees, E.M.: Evaluation by highly relevant documents. In: SIGIR 2001: Proceedings of the 24th annual international ACM SIGIR conference on Research and development in information retrieval, pp. 74–82. ACM Press, New York (2001)

    Chapter  Google Scholar 

  16. Boyan, J., Freitag, D., Joachims, T.: A machine learning architecture for optimizing web search engines. In: Proceedings of the AAAI Workshop on Internet-Based Information Systems, Portland, Oregon (1996)

    Google Scholar 

  17. Borlund, P., Ingwersen, P.: Measures of relative relevance and ranked half-life: performance indicators for interactive ir. In: SIGIR 1998: Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, pp. 324–331. ACM Press, New York (1998)

    Chapter  Google Scholar 

  18. Cooper, W.S.: Expected search length: A single measure of retrieval effectiveness based on the weak ordering action of retrieval systems. American Documentation 19(1), 30–42 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bogaerts, S., Leake, D. (2006). What Evaluation Criteria Are Right for CCBR? Considering Rank Quality. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A. (eds) Advances in Case-Based Reasoning. ECCBR 2006. Lecture Notes in Computer Science(), vol 4106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11805816_29

Download citation

  • DOI: https://doi.org/10.1007/11805816_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36843-4

  • Online ISBN: 978-3-540-36846-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics