Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Improved Multiobjective Evolutionary Algorithm Based on Dominating Tree

  • Conference paper
PRICAI 2006: Trends in Artificial Intelligence (PRICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4099))

Included in the following conference series:

Abstract

There has emerged a surge of research activity on multiobjective optimization using evolutionary computation in recent years and a number of well performing algorithms have been published. The quick and highly efficient multiobjective evolutionary algorithm based on dominating tree has been criticized mainly for its restricted elite archive and absence of density estimation. This paper improves the algorithm in these two aspects. The nearest distance between the node and other nodes in the same sibling chain is used as its density estimation; the population growing and declining strategies are proposed to avoid the retreating and shrinking phenomenon caused by the restricted elite archive. The simulation results show that the improved algorithm is able to maintain a better spread of solutions and converge better in the obtained nondominated front compared with NSGA-II, SPEA2 and the original algorithm for most test functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. Wiley, U.K (2001)

    Google Scholar 

  2. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1995)

    Article  Google Scholar 

  3. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. Evol. Comp. 3(4), 257–271 (1999)

    Article  Google Scholar 

  4. Deb, K., Pratab, A., Agarwal, S., MeyArivan, T.: A fast and Elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    Article  Google Scholar 

  5. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report 103, ETH Zentrum, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

    Google Scholar 

  6. Shi, C., Li, Y., Kang, L.S.: A New Simple and Highly Efficient Multiobjective Optimal Evolutionary Algorithm. In: Proceedings of 2003 IEEE Conference on Evolutionary Computation, Australia, pp. 1536–1542 (2003)

    Google Scholar 

  7. Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evol. Comput. 18(2), 125–147 (2000)

    Article  Google Scholar 

  8. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutinary Algorithms: Empirical Results. Evol. Comput. 18(2), 173–195 (2000)

    Article  Google Scholar 

  9. Fieldsend, J.E., Everson, R.M., Singh, S.: Using Unconstrained Elite Archives for Multiobjective Optimization. IEEE Trans. Evol. Comput. 7, 305–323 (2003)

    Article  Google Scholar 

  10. Hanne, T.: On the convergence of multiobjective evolutionary algorithms. Eur. J. Oper. Res. 117, 553–564 (1999)

    Article  MATH  Google Scholar 

  11. Yen, G., Lu, H.: Dynamic Multiobjective Evolutionary Algorithm: Adaptive Cell-Based Rank and Density Estimation. IEEE Trans. Evol. Comput. 7(3), 253–274 (2003)

    Article  Google Scholar 

  12. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA- A Platform and Programming Language Independent interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms, Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  14. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Proceedings of 2002 Congress on Evolutionary Computation, vol. 1, pp. 825–830 (2002)

    Google Scholar 

  15. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)

    MATH  MathSciNet  Google Scholar 

  16. Deb, K., Samir, A., etc: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. KanGAL Report No. 20001, Kanpur, PIN 208 016, India

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shi, C., Li, Q., Zhang, Z., Shi, Z. (2006). An Improved Multiobjective Evolutionary Algorithm Based on Dominating Tree. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36668-3_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36667-6

  • Online ISBN: 978-3-540-36668-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics