Abstract
There has emerged a surge of research activity on multiobjective optimization using evolutionary computation in recent years and a number of well performing algorithms have been published. The quick and highly efficient multiobjective evolutionary algorithm based on dominating tree has been criticized mainly for its restricted elite archive and absence of density estimation. This paper improves the algorithm in these two aspects. The nearest distance between the node and other nodes in the same sibling chain is used as its density estimation; the population growing and declining strategies are proposed to avoid the retreating and shrinking phenomenon caused by the restricted elite archive. The simulation results show that the improved algorithm is able to maintain a better spread of solutions and converge better in the obtained nondominated front compared with NSGA-II, SPEA2 and the original algorithm for most test functions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. Wiley, U.K (2001)
Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1995)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans. Evol. Comp. 3(4), 257–271 (1999)
Deb, K., Pratab, A., Agarwal, S., MeyArivan, T.: A fast and Elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report 103, ETH Zentrum, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)
Shi, C., Li, Y., Kang, L.S.: A New Simple and Highly Efficient Multiobjective Optimal Evolutionary Algorithm. In: Proceedings of 2003 IEEE Conference on Evolutionary Computation, Australia, pp. 1536–1542 (2003)
Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evol. Comput. 18(2), 125–147 (2000)
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutinary Algorithms: Empirical Results. Evol. Comput. 18(2), 173–195 (2000)
Fieldsend, J.E., Everson, R.M., Singh, S.: Using Unconstrained Elite Archives for Multiobjective Optimization. IEEE Trans. Evol. Comput. 7, 305–323 (2003)
Hanne, T.: On the convergence of multiobjective evolutionary algorithms. Eur. J. Oper. Res. 117, 553–564 (1999)
Yen, G., Lu, H.: Dynamic Multiobjective Evolutionary Algorithm: Adaptive Cell-Based Rank and Density Estimation. IEEE Trans. Evol. Comput. 7(3), 253–274 (2003)
Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA- A Platform and Programming Language Independent interface for Search Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 494–508. Springer, Heidelberg (2003)
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms, Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable Multi-Objective Optimization Test Problems. In: Proceedings of 2002 Congress on Evolutionary Computation, vol. 1, pp. 825–830 (2002)
Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)
Deb, K., Samir, A., etc: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. KanGAL Report No. 20001, Kanpur, PIN 208 016, India
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shi, C., Li, Q., Zhang, Z., Shi, Z. (2006). An Improved Multiobjective Evolutionary Algorithm Based on Dominating Tree. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_73
Download citation
DOI: https://doi.org/10.1007/978-3-540-36668-3_73
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36667-6
Online ISBN: 978-3-540-36668-3
eBook Packages: Computer ScienceComputer Science (R0)