Abstract
Owing to the highly complicated nature and the escalating cost involved in construction claims, it is highly desirable for the parties to a dispute to know with some certainty how the case would be resolved if it were taken to court. The use of artificial neural networks can be a cost-effective technique to help to predict the outcome of construction claims, on the basis of characteristics of cases and the corresponding past court decisions. This paper presents the application of a split-step particle swarm optimization (PSO) model for training perceptrons to predict the outcome of construction claims in Hong Kong. The advantages of global search capability of PSO algorithm in the first step and local fast convergence of Levenberg-Marquardt algorithm in the second step are combined together. The results demonstrate that, when compared with the benchmark backward propagation algorithm and the conventional PSO algorithm, it attains a higher accuracy in a much shorter time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chau, K.W., Cheng, C.T.: Real-Time Prediction of Water Stage with Artificial Neural Network Approach. In: McKay, B., Slaney, J.K. (eds.) Canadian AI 2002. LNCS (LNAI), vol. 2557, pp. 715–715. Springer, Heidelberg (2002)
Cheng, C.T., Chau, K.W., Sun, Y.G., Lin, J.Y.: Long-term Prediction of Discharges in Manwan Reservoir using Artificial Neural Network Models. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 1040–1045. Springer, Heidelberg (2005)
Rumelhart, D.E., Widrow, B., Lehr, M.A.: The Basic Ideas in Neural Networks. Communications of the ACM 37(3), 87–92 (1994)
Hagan, M.T., Menhaj, M.B.: Training Feedforward Networks with the Marquardt Algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)
Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, pp. 1942–1948 (1995)
Arditi, D., Oksay, F.E., Tokdemir, O.B.: Predicting the Outcome of Construction Litigation Using Neural Networks. Computer-Aided Civil and Infrastructure Engineering 13(2), 75–81 (1998)
Chau, K.W.: Predicting Construction Litigation Outcome using Particle Swarm Optimization. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 571–578. Springer, Heidelberg (2005)
Chau, K.W.: Resolving Construction Disputes by Mediation: Hong Kong Experience. Journal of Management in Engineering, ASCE 8(4), 384–393 (1992)
Kennedy, J.: The Particle Swarm: Social Adaptation of Knowledge. In: Proceedings of the 1997 International Conference on Evolutionary Computation, pp. 303–308 (1997)
Clerc, M., Kennedy, J.: The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chau, Kw. (2006). A Split-Step PSO Algorithm in Predicting Construction Litigation Outcome. In: Yang, Q., Webb, G. (eds) PRICAI 2006: Trends in Artificial Intelligence. PRICAI 2006. Lecture Notes in Computer Science(), vol 4099. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36668-3_163
Download citation
DOI: https://doi.org/10.1007/978-3-540-36668-3_163
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36667-6
Online ISBN: 978-3-540-36668-3
eBook Packages: Computer ScienceComputer Science (R0)