Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-objective Blind Image Fusion

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4062))

Included in the following conference series:

  • 1035 Accesses

Abstract

Based on multi-objective optimization, a novel approach to blind image fusion (without the reference image) is presented in this paper, which can achieve the optimal fusion indices through optimizing the fusion parameters. First the proper evaluation indices of blind image fusion are given; then the fusion model in DWT domain is established; and finally the adaptive multi-objective particle swarm optimization (AMOPSO-II) is proposed and used to search the fusion parameters. AMOPSO-II not only uses an adaptive mutation and an adaptive inertia weight to raise the search capacity, but also uses a new crowding operator to improve the distribution of nondominated solutions along the Pareto front. Results show that AMOPSO-II has better exploratory capabilities than AMOPSO-I and MOPSO, and that the approach to blind image fusion based on AMOPSO-II realizes the optimal image fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pohl, C., Genderen, J.L.V.: Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 5, 823–854 (1998)

    Article  Google Scholar 

  2. Niu, Y.F., Shen, L.C.: A novel approach to image fusion based on multi-objective optimization. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian (in press, 2006)

    Google Scholar 

  3. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 2, 149–172 (2000)

    Article  Google Scholar 

  4. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm, TIK-Report 103, ETH, Zurich, Switzerland (2001)

    Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2, 182–197 (2002)

    Article  Google Scholar 

  6. Li, X.: A non-dominated sorting particle swarm optimizer for multiobjective optimization. In: Cantu-Paz, E., et al. (eds.) Genetic and Evolutionary Computation, pp. 37–48. Springer, Berlin (2003)

    Chapter  Google Scholar 

  7. Coello, C.A., Pulido, G.T., Lechuga, M.S.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 3, 256–279 (2004)

    Article  Google Scholar 

  8. Sierra, M.R., Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and e-dominance. In: Coello, C.A., et al. (eds.) Evolutionary Multi-Criterion Optimization, pp. 505–519. Springer, Berlin (2005)

    Chapter  Google Scholar 

  9. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 4, 600–612 (2004)

    Article  Google Scholar 

  10. Wang, Z.J., Ziou, D., Armenakis, C., Li, D.R., Li, Q.Q.: A comparative analysis of image fusion methods. IEEE Trans. Geosci. Remote Sens. 6, 1391–1402 (2005)

    Article  Google Scholar 

  11. Qu, G.H., Zhang, D.L., Yan, P.F.: Information measure for performance of image fusion. Electron. Lett. 7, 313–315 (2002)

    Article  Google Scholar 

  12. Ramesh, C., Ranjith, T.: Fusion performance measures and a lifting wavelet transform based algorithm for image fusion. In: Proceedings of the 5th International Conference on Information Fusion, Annapolis, pp. 317–320 (2002)

    Google Scholar 

  13. Huang, X.S., Chen, Z.: A wavelet-based image fusion algorithm. In: Proceedings of the IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Beijing, pp. 602–605 (2002)

    Google Scholar 

  14. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, pp. 1942–1948 (1995)

    Google Scholar 

  15. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Mateo (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niu, Y., Shen, L., Bu, Y. (2006). Multi-objective Blind Image Fusion. In: Wang, GY., Peters, J.F., Skowron, A., Yao, Y. (eds) Rough Sets and Knowledge Technology. RSKT 2006. Lecture Notes in Computer Science(), vol 4062. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795131_104

Download citation

  • DOI: https://doi.org/10.1007/11795131_104

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36297-5

  • Online ISBN: 978-3-540-36299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics