Abstract
Self-stabilizing protocols can tolerate any type and any number of transient faults. However, in general, self-stabilizing protocols provide no guarantee about their behavior against permanent faults. This paper proposes a self-stabilizing link-coloring protocol resilient to (permanent) Byzantine faults in arbitrary networks. The protocol assumes the central daemon, and uses 2Δ−1 colors where Δ is the maximum degree in the network. This protocol guarantees that any link (u,v) between non faulty processes u and v is assigned a color within 2Δ+2 rounds and its color remains unchanged thereafter. Our protocol is Byzantine insensitive in the sense that the subsystem of correct processes remains operating properly in spite of unbounded Byzantine faults.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anagnostou, E., Hadzilacos, V.: Tolerating transient and permanent failures. In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 174–188. Springer, Heidelberg (1993)
Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: impossibility results and solutions using self-stabiling failure detectors. International Journal of Systems Science 28(11), 1177–1187 (1997)
Beauquier, J., Kekkonen-Moneta, S.: On ftss-solvable distributed problems. In: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing, p. 290 (1997)
Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communications of the Association of the Computing Machinery 17, 643–644 (1974)
Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
Gandham, S., Dawande, M., Prakash, R.: Link scheduling in sensor networks: Distributed edge coloring revisited. In: Proceedings of Infocom 2005. IEEE Press, Los Alamitos (2005)
Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs. Distributed Computing 7(1), 55–59 (1993)
Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance. In: Proceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing, pp. 195–206 (1993)
Gradinariu, M., Johnen, C.: Self-stabilizing Neighborhood Unique Naming under Unfair Scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)
Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and arbitrary graphs. In: Procedings of the 4th International Conference on Principles of Distributed Systems, OPODIS 2000, Paris, France, December 20-22, 2000, pp. 55–70 (2000)
Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Inf. Process. Lett. 87(5), 251–255 (2003)
Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)
Huang, S.-T., Hung, S.-S., Tzeng, C.-H.: Self-stabilizing coloration in anonymous planar networks. Information processing letters 95(1), 307–312 (2005)
Masuzawa, T.: A fault-tolerant and self-stabilizing protocol for the topology problem. In: Proceedings of the 2nd Workshop on Self-Stabilizing Systems, pp. 1.1–1.15 (1995)
Matsui, H., Inoue, M., Masuzawa, T., Fujiwara, H.: Fault-tolerant and self-stabilizing protocols using an unreliable failure detector. IEICE Transactions on Information and Systems E83-D(10), 1831–1840 (2000)
Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proceedings of 21st IEEE Symposium on Reliable Distributed Systems, pp. 22–29 (2002)
Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol resilient to byzantine faults in tree networks. In: 8th International Conference on Principles of Distributed Systems, Grenoble, France, December 15-17, pp. 196–206 (2004)
Shukla, S., Rosenkrantz, D., Ravi, S.: Developing self-stabilizing coloring algorithms via systematic randomization. In: Proceedings of the International Workshop on Parallel Processing, Bangalore, India, pp. 668–673. Tata-McGrawhill, New Delhi (1994)
Shukla, S., Rosenkrantz, D., Ravi, S.: Observations on self-stabilizing graph algorithms for anonymous networks. In: Proceedings of the Second Workshop on Self-stabilizing Systems (WSS 1995), pp. 7.1–7.15 (1995)
Sur, S., Srimani, P.K.: A self-stabilizing algorithm for coloring bipartite graphs. Inf. Sci. 69(3), 219–227 (1993)
Ukena, S., Katayama, Y., Masuzawa, T., Fujiwara, H.: A self-stabilizing spanning tree protocol that tolerates non-quiescent permanent faults. IEICE Transaction J85-D-I(11), 1007–1014 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Masuzawa, T., Tixeuil, S. (2006). A Self-stabilizing Link-Coloring Protocol Resilient to Unbounded Byzantine Faults in Arbitrary Networks. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds) Principles of Distributed Systems. OPODIS 2005. Lecture Notes in Computer Science, vol 3974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795490_11
Download citation
DOI: https://doi.org/10.1007/11795490_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36321-7
Online ISBN: 978-3-540-36322-4
eBook Packages: Computer ScienceComputer Science (R0)