Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Self-stabilizing Link-Coloring Protocol Resilient to Unbounded Byzantine Faults in Arbitrary Networks

  • Conference paper
Principles of Distributed Systems (OPODIS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3974))

Included in the following conference series:

Abstract

Self-stabilizing protocols can tolerate any type and any number of transient faults. However, in general, self-stabilizing protocols provide no guarantee about their behavior against permanent faults. This paper proposes a self-stabilizing link-coloring protocol resilient to (permanent) Byzantine faults in arbitrary networks. The protocol assumes the central daemon, and uses 2Δ−1 colors where Δ is the maximum degree in the network. This protocol guarantees that any link (u,v) between non faulty processes u and v is assigned a color within 2Δ+2 rounds and its color remains unchanged thereafter. Our protocol is Byzantine insensitive in the sense that the subsystem of correct processes remains operating properly in spite of unbounded Byzantine faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anagnostou, E., Hadzilacos, V.: Tolerating transient and permanent failures. In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 174–188. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  2. Beauquier, J., Kekkonen-Moneta, S.: Fault-tolerance and self-stabilization: impossibility results and solutions using self-stabiling failure detectors. International Journal of Systems Science 28(11), 1177–1187 (1997)

    Article  MATH  Google Scholar 

  3. Beauquier, J., Kekkonen-Moneta, S.: On ftss-solvable distributed problems. In: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing, p. 290 (1997)

    Google Scholar 

  4. Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Communications of the Association of the Computing Machinery 17, 643–644 (1974)

    Article  MATH  Google Scholar 

  5. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  6. Gandham, S., Dawande, M., Prakash, R.: Link scheduling in sensor networks: Distributed edge coloring revisited. In: Proceedings of Infocom 2005. IEEE Press, Los Alamitos (2005)

    Google Scholar 

  7. Ghosh, S., Karaata, M.H.: A self-stabilizing algorithm for coloring planar graphs. Distributed Computing 7(1), 55–59 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance. In: Proceedings of the 12th Annual ACM Symposium on Principles of Distributed Computing, pp. 195–206 (1993)

    Google Scholar 

  9. Gradinariu, M., Johnen, C.: Self-stabilizing Neighborhood Unique Naming under Unfair Scheduler. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 458–465. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Gradinariu, M., Tixeuil, S.: Self-stabilizing vertex coloration and arbitrary graphs. In: Procedings of the 4th International Conference on Principles of Distributed Systems, OPODIS 2000, Paris, France, December 20-22, 2000, pp. 55–70 (2000)

    Google Scholar 

  11. Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Linear time self-stabilizing colorings. Inf. Process. Lett. 87(5), 251–255 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Herman, T., Tixeuil, S.: A distributed TDMA slot assignment algorithm for wireless sensor networks. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) ALGOSENSORS 2004. LNCS, vol. 3121, pp. 45–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Huang, S.-T., Hung, S.-S., Tzeng, C.-H.: Self-stabilizing coloration in anonymous planar networks. Information processing letters 95(1), 307–312 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Masuzawa, T.: A fault-tolerant and self-stabilizing protocol for the topology problem. In: Proceedings of the 2nd Workshop on Self-Stabilizing Systems, pp. 1.1–1.15 (1995)

    Google Scholar 

  15. Matsui, H., Inoue, M., Masuzawa, T., Fujiwara, H.: Fault-tolerant and self-stabilizing protocols using an unreliable failure detector. IEICE Transactions on Information and Systems E83-D(10), 1831–1840 (2000)

    Google Scholar 

  16. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: Proceedings of 21st IEEE Symposium on Reliable Distributed Systems, pp. 22–29 (2002)

    Google Scholar 

  17. Sakurai, Y., Ooshita, F., Masuzawa, T.: A self-stabilizing link-coloring protocol resilient to byzantine faults in tree networks. In: 8th International Conference on Principles of Distributed Systems, Grenoble, France, December 15-17, pp. 196–206 (2004)

    Google Scholar 

  18. Shukla, S., Rosenkrantz, D., Ravi, S.: Developing self-stabilizing coloring algorithms via systematic randomization. In: Proceedings of the International Workshop on Parallel Processing, Bangalore, India, pp. 668–673. Tata-McGrawhill, New Delhi (1994)

    Google Scholar 

  19. Shukla, S., Rosenkrantz, D., Ravi, S.: Observations on self-stabilizing graph algorithms for anonymous networks. In: Proceedings of the Second Workshop on Self-stabilizing Systems (WSS 1995), pp. 7.1–7.15 (1995)

    Google Scholar 

  20. Sur, S., Srimani, P.K.: A self-stabilizing algorithm for coloring bipartite graphs. Inf. Sci. 69(3), 219–227 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ukena, S., Katayama, Y., Masuzawa, T., Fujiwara, H.: A self-stabilizing spanning tree protocol that tolerates non-quiescent permanent faults. IEICE Transaction J85-D-I(11), 1007–1014 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Masuzawa, T., Tixeuil, S. (2006). A Self-stabilizing Link-Coloring Protocol Resilient to Unbounded Byzantine Faults in Arbitrary Networks. In: Anderson, J.H., Prencipe, G., Wattenhofer, R. (eds) Principles of Distributed Systems. OPODIS 2005. Lecture Notes in Computer Science, vol 3974. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11795490_11

Download citation

  • DOI: https://doi.org/10.1007/11795490_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36321-7

  • Online ISBN: 978-3-540-36322-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics