Nothing Special   »   [go: up one dir, main page]

Skip to main content

Construction of Rational Points on Elliptic Curves over Finite Fields

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

We give a deterministic polynomial-time algorithm that computes a nontrivial rational point on an elliptic curve over a finite field, given a Weierstrass equation for the curve. For this, we reduce the problem to the task of finding a rational point on a curve of genus zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bach, E., Shallit, J.: Algorithmic Number Theory. The MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  2. Berlekamp, E.R.: Algebraic coding theory. McGraw-Hill Book Co., New York (1968)

    MATH  Google Scholar 

  3. Bourbaki, N.: Algebra II. In: Elements of Mathematics, ch. 4–7, pp. 4–7. Springer, Berlin (2003); Translated from the 1981 French edition by P. M. Cohn and J. Howie, Reprint of the 1990 English edition

    Google Scholar 

  4. Bumby, R.T.: Sums of four squares. In: Number theory (New York, 1991–1995), pp. 1–8. Springer, New York (1996)

    Google Scholar 

  5. Cohen, H.: A course in computational algebraic number theory. Graduate Texts in Mathematics, vol. 138. Springer, Berlin (1993)

    MATH  Google Scholar 

  6. Reid, M.: Undergraduate algebraic geometry. London Mathematical Society Student Texts, vol. 12. Cambridge University Press, Cambridge (1988)

    MATH  Google Scholar 

  7. Schicho, J.: Proper parametrization of surfaces with a rational pencil. In: Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation (St. Andrews), pp. 292–300. ACM Press, New York (2000)

    Chapter  Google Scholar 

  8. Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod p. Math. Comp. 44(170), 483–494 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shafarevich, I.R.: Basic algebraic geometry, 2nd edn., vol. 1. Springer, Berlin (1994); Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid

    Google Scholar 

  10. Silverman, J.H.: The arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 106. Springer, New York (1992); Corrected reprint of the 1986 original

    Google Scholar 

  11. Skałba, M.: Points on elliptic curves over finite fields. Acta Arith. 117(3), 293–301 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. van de Woestijne, C.: Deterministic equation solving over finite fields. PhD thesis, Universiteit Leiden (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shallue, A., van de Woestijne, C.E. (2006). Construction of Rational Points on Elliptic Curves over Finite Fields. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_36

Download citation

  • DOI: https://doi.org/10.1007/11792086_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics