Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficiently Computable Endomorphisms for Hyperelliptic Curves

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

Elliptic curves have a well-known and explicit theory for the construction and application of endomorphisms, which can be applied to improve performance in scalar multiplication. Recent work has extended these techniques to hyperelliptic Jacobians, but one obstruction is the lack of explicit models of curves together with an efficiently computable endomorphism. In the case of hyperelliptic curves there are limited examples, most methods focusing on special CM curves or curves defined over a small field. In this article we describe three infinite families of curves which admit an efficiently computable endomorphism, and give algorithms for their efficient application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cantor, D.: Computing in the Jacobian of a hyperelliptic curve. Math. Comp. 48, 95–101 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ciet, M., Lange, T., Sica, F., Quisquater, J.-J.: Improved algorithms for efficient arithmetic on elliptic curves using fast endomorphisms. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 387–400. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Duursma, I., Sakurai, K.: Efficient algorithms for the Jacobian variety of hyperelliptic curves y 2 = x p − x + 1 over a finite field of odd characteristic p. In: Coding theory, cryptography and related areas (Guanajuato, 1998), pp. 73–89. Springer, Berlin (2000)

    Google Scholar 

  4. Ellenberg, J.: Endomorphism algebras of Jacobians. Advances in Mathematics 162, 243–271 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cassels, J.W.S., Flynn, E.V.: Prolegomena to a middlebrow arithmetic of curves of genus 2. London Mathematical Society Lecture Note Series, vol. 230. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  6. Gallant, R., Lambert, R., Vanstone, S.: Faster point multiplication on elliptic curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Gaudry, P., Gürel, N.: Counting points in medium characteristic using Kedlaya’s algorithm. Experiment. Math. 12(4), 395–402 (2003)

    MATH  MathSciNet  Google Scholar 

  8. Hashimoto, K.-I.: On Brumer’s family of RM-curves of genus two. Tohoku Math. J. (2) 52(4), 475–488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kedlaya, K.: Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. J. Ramanujan Math. Soc. 16(4), 323–338 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Koblitz, N.: CM-curves with good cryptographic properties. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 279–287. Springer, Heidelberg (1992)

    Google Scholar 

  11. Lange, T.: Efficient arithmetic on hyperelliptic Koblitz curves, Ph.D. Thesis (2001)

    Google Scholar 

  12. Lidl, R., Mullen, G.L., Turnwald, G.: Dickson polynomials, Pitman monographs and surveys in pure and applied mathematics 65, Longman Scientific & Technical (1993)

    Google Scholar 

  13. Menezes, A.J., Vanstone, S.A.: The implementation of elliptic curve cryptosystems. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 2–13. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  14. Mestre, J.-F.: Familles de courbes hyperelliptiques à multiplications réelles. In: Arithmetic algebraic geometry (Texel, 1989). Progress in Math., vol. 89, pp. 193–208. Birkhäuser, Boston (1991)

    Google Scholar 

  15. Park, Y.-H., Jeong, S., Lim, J.: Speeding up point multiplication on hyperelliptic curves with efficiently-computable endomorphisms. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 197–208. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Smith, B.A.: Explicit endomorphisms and correspondences, Ph.D. Thesis, The University of Sydney (2005)

    Google Scholar 

  17. Solinas, J.A.: Efficient arithmetic on Koblitz curves. Des. Codes Cryptogr. 19(2-3), 195–249 (2000)

    MATH  MathSciNet  Google Scholar 

  18. Stoll, M.: Two simple 2-dimensional abelian varieties defined over Q with Mordell-Weil group of rank at least 19. C. R. Acad. Sci. Paris Sér. I Math. 321(10), 1341–1345 (1995)

    MATH  MathSciNet  Google Scholar 

  19. Takashima, K.: A new type of fast endomorphisms on Jacobians of hyperelliptic curves and their cryptographic application. IEICE Trans. Fundamentals E89-A(1), 124–133 (2006)

    Article  Google Scholar 

  20. Tautz, W., Top, J., Verberkmoes, A.: Explicit hyperelliptic curves with real multiplication and permutation polynomials. Canad. J. Math. 43(5), 1055–1064 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Weil, A.: On some exponential sums. Proc. Nat. Acad. Sci. 34, 204–207 (1948)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kohel, D.R., Smith, B.A. (2006). Efficiently Computable Endomorphisms for Hyperelliptic Curves. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_35

Download citation

  • DOI: https://doi.org/10.1007/11792086_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics