Nothing Special   »   [go: up one dir, main page]

Skip to main content

Classification of Genus 3 Curves in Special Strata of the Moduli Space

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

We describe the invariants of plane quartic curves — nonhyperelliptic genus 3 curves in their canonical model — as determined by Dixmier and Ohno, with application to the classification of curves with given structure. In particular, we determine modular equations for the strata in the moduli space \({\mathcal M}_3\) of plane quartics which have at least seven hyperflexes, and obtain an computational characterization of curves in these strata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brumer, A.: Personal communication (2006)

    Google Scholar 

  2. Dixmier, J.: On the projective invariants of quartic plane curves. Adv. in Math. 64(3), 279–304 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Girard, M., Kohel, D.R., Ritzenthaler, C.: Invariants of plane quartics, magma code, Available at: http://www.maths.usyd.edu.au/u/kohel/alg

  4. Harris, J.: Galois groups of enumerative problems. Duke Math. J. 46, 685–724 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hess, F.: An algorithm for computing Weierstrass points. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 357–371. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Hess, F.: Computing Riemann-Roch spaces in algebraic function fields and related topics. J. Symbolic Comput. 33(4), 425–445 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Hess, F.: An algorithm for computing isomorphisms of algebraic function fields. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 263–271. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Igusa, J.: Arithmetic variety of moduli for genus two. Ann. of Math. 72(2), 612–649 (1960)

    Article  MathSciNet  Google Scholar 

  9. Lugert, E.: Weierstrapunkte kompakter Riemannscher Fläschen vom Geschlecht 3, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (1981)

    Google Scholar 

  10. Cannon, J., Bosma, W.(eds.): Magma Handbook, http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm

  11. Mestre, J.-F.: Construction de courbes de genre 2 à partir de leurs modules. Effective methods in algebraic geometry (Castiglioncello, 1990), Progr. Math. 94, 313–334 (1991)

    MathSciNet  Google Scholar 

  12. Ohno, T.: Invariant subring of ternary quartics I – generators and relations (preprint)

    Google Scholar 

  13. Olver, P.J.: Classical invariant theory. London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  14. Poonen, B., Schaefer, E., Stoll, M.: Twists of X(7) and primitive solutions to x 2 + y 3 = z 7 (preprint, 2005)

    Google Scholar 

  15. Salmon, G.: A treatise on the higher plane curves, 3rd edn. (1879); Reprinted by Chelsea, New York (1960)

    Google Scholar 

  16. Shioda, T.: On the graded ring of invariants of binary octavics. Amer. J. Math. 89, 1022–1046 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sturmfels, B.: Algorithms in invariant theory. Texts and Monographs in Symbolic Computation. Springer, Vienna (1993)

    MATH  Google Scholar 

  18. Vermeulen, A.M.: Weierstrass points of weight two on curves of genus three. PhD thesis, Universiteit van Amsterdam (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Girard, M., Kohel, D.R. (2006). Classification of Genus 3 Curves in Special Strata of the Moduli Space. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_25

Download citation

  • DOI: https://doi.org/10.1007/11792086_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics