Abstract
We describe the invariants of plane quartic curves — nonhyperelliptic genus 3 curves in their canonical model — as determined by Dixmier and Ohno, with application to the classification of curves with given structure. In particular, we determine modular equations for the strata in the moduli space \({\mathcal M}_3\) of plane quartics which have at least seven hyperflexes, and obtain an computational characterization of curves in these strata.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brumer, A.: Personal communication (2006)
Dixmier, J.: On the projective invariants of quartic plane curves. Adv. in Math. 64(3), 279–304 (1987)
Girard, M., Kohel, D.R., Ritzenthaler, C.: Invariants of plane quartics, magma code, Available at: http://www.maths.usyd.edu.au/u/kohel/alg
Harris, J.: Galois groups of enumerative problems. Duke Math. J. 46, 685–724 (1979)
Hess, F.: An algorithm for computing Weierstrass points. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 357–371. Springer, Heidelberg (2002)
Hess, F.: Computing Riemann-Roch spaces in algebraic function fields and related topics. J. Symbolic Comput. 33(4), 425–445 (2002)
Hess, F.: An algorithm for computing isomorphisms of algebraic function fields. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 263–271. Springer, Heidelberg (2004)
Igusa, J.: Arithmetic variety of moduli for genus two. Ann. of Math. 72(2), 612–649 (1960)
Lugert, E.: Weierstrapunkte kompakter Riemannscher Fläschen vom Geschlecht 3, Ph.D. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (1981)
Cannon, J., Bosma, W.(eds.): Magma Handbook, http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm
Mestre, J.-F.: Construction de courbes de genre 2 à partir de leurs modules. Effective methods in algebraic geometry (Castiglioncello, 1990), Progr. Math. 94, 313–334 (1991)
Ohno, T.: Invariant subring of ternary quartics I – generators and relations (preprint)
Olver, P.J.: Classical invariant theory. London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)
Poonen, B., Schaefer, E., Stoll, M.: Twists of X(7) and primitive solutions to x 2 + y 3 = z 7 (preprint, 2005)
Salmon, G.: A treatise on the higher plane curves, 3rd edn. (1879); Reprinted by Chelsea, New York (1960)
Shioda, T.: On the graded ring of invariants of binary octavics. Amer. J. Math. 89, 1022–1046 (1967)
Sturmfels, B.: Algorithms in invariant theory. Texts and Monographs in Symbolic Computation. Springer, Vienna (1993)
Vermeulen, A.M.: Weierstrass points of weight two on curves of genus three. PhD thesis, Universiteit van Amsterdam (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Girard, M., Kohel, D.R. (2006). Classification of Genus 3 Curves in Special Strata of the Moduli Space. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_25
Download citation
DOI: https://doi.org/10.1007/11792086_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36075-9
Online ISBN: 978-3-540-36076-6
eBook Packages: Computer ScienceComputer Science (R0)