Abstract
Despite their popularity, lattice reduction algorithms remain mysterious in many ways. It has been widely reported that they behave much more nicely than what was expected from the worst-case proved bounds, both in terms of the running time and the output quality. In this article, we investigate this puzzling statement by trying to model the average case of lattice reduction algorithms, starting with the celebrated Lenstra-Lenstra-Lovász algorithm (L3). We discuss what is meant by lattice reduction on the average, and we present extensive experiments on the average case behavior of L3, in order to give a clearer picture of the differences/similarities between the average and worst cases. Our work is intended to clarify the practical behavior of L3 and to raise theoretical questions on its average behavior.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proc. of STOC 1996, pp. 99–108. ACM Press, New York (1996)
Ajtai, M.: Random lattices and a conjectured 0-1 law about their polynomial time computable properties. In: Proc. of FOCS 2002, pp. 13–39. IEEE, Los Alamitos (2002)
Ajtai, M.: The worst-case behavior of Schnorr’s algorithm approximating the shortest nonzero vector in a lattice. In: Proc. of STOC 2003, pp. 396–406. ACM Press, New York (2003)
Ajtai, M.: Generating Random Lattices According to the Invariant Distribution. Draft (2006)
Babai, L.: On Lovász lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986)
Backes, W., Wetzel, S.: Heuristics on lattice reduction in practice. ACM Journal of Experimental Algorithms 7,1 (2002)
Batut, C., Belabas, K., Bernardi, D., Cohen, H., Olivier, M.: PARI/GP computer package version 2, Available at: http://pari.math.u-bordeaux.fr/
Cassels, J.W.S.: Rational quadratic forms. London Mathematical Society Monographs, vol. 13. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1978)
Cohen, H.: A Course in Computational Algebraic Number Theory, 2nd edn. Springer, Heidelberg (1995)
Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)
Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)
Goldstein, D., Mayer, A.: On the equidistribution of Hecke points. Forum Mathematicum 15, 165–189 (2003)
Golub, G., van Loan, C.: Matrix Computations. J. Hopkins Univ. Press (1996)
Groetschel, L., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)
Hermite, C.: xtraits de lettres de M. Hermite à M. Jacobi sur différents objets de la théorie des nombres, deuxième lettre. Journal für die reine und angewandte Mathematik 40, 279–290 (1850)
Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU : a ring based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)
Koy, H., Schnorr, C.P.: Segment LLL-reduction of lattice bases with floating-point orthogonalization. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 81–96. Springer, Heidelberg (2001)
Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 513–534 (1982)
Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Technical report 81-03, Mathematisch Instituut, Universiteit van Amsterdam (1981)
Lenstra Jr., H.W.: Integer programming with a fixed number of variables. Mathematics of Operations Research 8(4), 538–548 (1983)
Magma. The Magma computational algebra system for algebra, number theory and geometry, Available at: http://www.maths.usyd.edu.au:8000/u/magma/
Micciancio, D., Goldwasser, S.: Complexity of lattice problems: a cryptographic perspective. Kluwer Academic Press, Dordrecht (2002)
Nguyen, P.Q., Stehlé, D.: Floating-point LLL revisited. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 215–233. Springer, Heidelberg (2005)
Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)
Odlyzko, A.M.: The rise and fall of knapsack cryptosystems. In: Proc. of Cryptology and Computational Number Theory. In: Proc. of Symposia in Applied Mathematics, vol. 42, pp. 75–88. AMS (1989)
The SPACES Project. MPFR, a LGPL-library for multiple-precision floating-point computations with exact rounding, Available at: http://www.mpfr.org/
Schnorr, C.P.: A hierarchy of polynomial lattice basis reduction algorithms. Theoretical Computer Science 53, 201–224 (1987)
Schnorr, C.P.: A more efficient algorithm for lattice basis reduction. Journal of Algorithms 9(1), 47–62 (1988)
Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematics of Programming 66, 181–199 (1994)
Shoup, V.: NTL, Number Theory Library, Available at: http://www.shoup.net/ntl/
Siegel, C.L.: A mean value theorem in geometry of numbers. Annals of Mathematics 46(2), 340–347 (1945)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nguyen, P.Q., Stehlé, D. (2006). LLL on the Average. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_18
Download citation
DOI: https://doi.org/10.1007/11792086_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-36075-9
Online ISBN: 978-3-540-36076-6
eBook Packages: Computer ScienceComputer Science (R0)