Nothing Special   »   [go: up one dir, main page]

Skip to main content

On the Density of Sums of Three Cubes

  • Conference paper
Algorithmic Number Theory (ANTS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4076))

Included in the following conference series:

Abstract

We give evidence that sums of 3 cubes have a positive density, the value of which, 0.0999425..., is that given by a probabilistic model we developed earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrucand, P.: Sur la distribution empirique des sommes de trois cubes ou de quatre bicarrés. Note aux C. R. Acad. Sc. Paris 267, 409–411 (1968)

    MATH  MathSciNet  Google Scholar 

  2. Deshouillers, J.-M., Hennecart, F., Landreau, B.: Sums of powers: an arithmetic refinement to the probabilistic model of Erdős and Rényi. Acta Arith. 85, 13–33 (1998)

    MATH  MathSciNet  Google Scholar 

  3. Deshouillers, J.-M., Hennecart, F., Landreau, B.: Do sums of 4 biquadrates have a positive density? In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 196–203. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Erdős, P., Rényi, A.: Additive properties of random sequences of positive integers. Acta Arith. 6, 83–110 (1960)

    MathSciNet  Google Scholar 

  5. Hooley, C.: On some topics connected with Waring’s problem. J. Reine Angew. Math. 369, 110–153 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Landau, E.: Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindestzahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate. Archiv der Math. und Phys. 13(3), 305–312 (1908); Collected Works, Mirsky, L., Schoenberg, I.J., Schwarz, W., Wefelscheid, H. (eds.) vol. 4, pp. 59–66. Thales Verlag (1985)

    Google Scholar 

  7. Vaughan, R.C.: The Hardy-Littlewood method. Cambridge Tracts in Mathematics, vol. 80. Cambridge University Press, Cambridge-New York (1981)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deshouillers, JM., Hennecart, F., Landreau, B. (2006). On the Density of Sums of Three Cubes. In: Hess, F., Pauli, S., Pohst, M. (eds) Algorithmic Number Theory. ANTS 2006. Lecture Notes in Computer Science, vol 4076. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11792086_11

Download citation

  • DOI: https://doi.org/10.1007/11792086_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36075-9

  • Online ISBN: 978-3-540-36076-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics