Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4065))

Included in the following conference series:

Abstract

Association rule discovery is an important technique for mining knowledge from large databases. Data mining researchers have studied subjective measures of interestingness to reduce the volume of discovered rules and to improve the overall efficiency of the knowledge discovery in databases process (KDD). The objective of this paper is to provide a framework that uses subjective measures of interestingness to discover interesting patterns from association rules algorithms. The framework works in an environment where the medical databases are evolving with time. In this paper we consider a unified approach to quantify interestingness of association rules. We believe that the expert mining can provide a basis for determining user threshold which will ultimately help us in finding interesting rules. The framework is tested on public datasets in medical domain and results are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kauffmann Publishers, San Francisco (2001)

    Google Scholar 

  2. Dunham, M.H.: Data Mining: Introductory and Advanced Topics, 1st edn. Pearson ygEducation (Singapore) Pte. Ltd (2003)

    Google Scholar 

  3. Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. Prentice-Hall of India Private Limited, India (2001)

    Google Scholar 

  4. Bronchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: Adaptive Constraint Pushing in Frequent Pattern Mining. In: Proceedings of the 17th European Conference on PAKDD 2003 (2003)

    Google Scholar 

  5. Bronchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: ExAMiner: Optimized Level-wise Frequent pattern Mining with Monotone Constraints. In: Proceedings of the 3rd International Conference on Data Mining (ICDM 2003) (2003)

    Google Scholar 

  6. Bronchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: Exante: Anticipated Data Reduction in Constrained Pattern Mining. In: Proceedings of the 7th PAKDD 2003 (2003)

    Google Scholar 

  7. Freitas, A.A.: On Rule Interestingness Measures. Knowledge-Based Systems 12, 309–315 (1999)

    Article  Google Scholar 

  8. Klemetinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding Interesting Rules from Large Sets of Discovered Association Rules. In: Proceedings of the 3rd International Conference on Information and Knowledge Management, Gaithersburg, Maryland (1994)

    Google Scholar 

  9. Liu, B., Hsu, W., Chen, S., Ma, Y.: Analyzing the Subjective Interestingness of Association Rules. IEEE Intelligent Systems (2000)

    Google Scholar 

  10. Liu, B., Hsu, W.: Post Analysis of Learned Rules. In: Proceedings of the 13th National Conference on AI (AAAI 1996) (1996)

    Google Scholar 

  11. Liu, B., Hsu, W., Lee, H.-Y., Mum, L.-F.: Tuple-Level Analysis for Identification of Interesting Rules. Technical Report TRA5/95, SoC. National University of Singapore, Singapore (1996)

    Google Scholar 

  12. Liu, B., Hsu, W.: Finding Interesting Patterns Using User Expectations. DISCS Technical Report (1995)

    Google Scholar 

  13. Liu, B., Hsu, W., Chen, S.: Using General Impressions to Analyze Discovered Classification Rules. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data mining (KDD 1997) (1997)

    Google Scholar 

  14. Padmanabhan, B., Tuzhilin, A.: Unexpectedness as a Measure of Interestingness in Knowledge Discovery. Working paper # IS-1997. Dept. of Information Systems, Stern School of Business, NYU (1997)

    Google Scholar 

  15. Padmanabhan, B., Tuzhilin, A.: A Belief-Driven Method for Discovering Unexpected Patterns. In: KDD 1998 (1998)

    Google Scholar 

  16. Padmanabhan, B., Tuzhilin, A.: Small is Beautiful: Discovering the Minimal Set of Unexpected Patterns. In: KDD 2000 (2000)

    Google Scholar 

  17. Piatetsky-Shapiro, G., Matheus, C.J.: The Interestingness of Deviations. In: Proceedings of AAAI Workshop on Knowledge Discovery in Databases (1994)

    Google Scholar 

  18. Piatetsky-Shapiro, G.: Discovery, Analysis, and Presentation of Strong Rules. In: Knowledge Discovery in Databases. The AAAI Press, Menlo Park (1991)

    Google Scholar 

  19. Psaila, G.: Discovery of Association Rule Meta-patterns. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 219–228. Springer, Heidelberg (1999)

    Google Scholar 

  20. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: ACM SIGMOD Conference of Management of Data, Washington D.C (1993)

    Google Scholar 

  21. Silberschatz, A., Tuzhilin, A.: On Subjective Measures of Interestingness in Knowledge Discovery. In: Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining (1995)

    Google Scholar 

  22. Silberschatz, A., Tuzhilin, A.: What Makes Patterns Interesting in Knowledge Discovery Systems. IEEE Trans. and Data Engineering 5(6) (1996)

    Google Scholar 

  23. Suzuki, E., Kodratoff, Y.: Discovery of Surprising Exception Rules Based on Intensity of Implication. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS (LNAI), vol. 1510. Springer, Heidelberg (1998)

    Google Scholar 

  24. Liu, B., Hsu, W., Chen, S., Ma, Y.: Analyzing the Subjective Interestingness of Association Rules. IEEE Intelligent Systems (2000)

    Google Scholar 

  25. Al-Hegami, A.S., Bhatnagar, V., Kumar, N.: Novelty Framework for Knowledge Discovery in Databases. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 48–57. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Bhatnagar, V., Al-Hegami, A.S., Kumar, N.: Novelty as a Measure of Interestingness in Knowledge Discovery. International Journal of Information Technology 2(1) (2005)

    Google Scholar 

  27. Kovalerchuk, B., Triantaphyllou, E., Despande, A., Vtyaev, E.: Interactive Learning of Monotone Boolean Function. Information Sciences 94(1-4), 87–118 (1996)

    Article  Google Scholar 

  28. Hansel, G.: Sur le nombre des functions Boolenes Monotones den variables. C.R. Acad. Sci. 262(20), 1088–1090 (1966) (in French)

    MathSciNet  Google Scholar 

  29. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques with Java implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaur, H., Wasan, S.K., Al-Hegami, A.S., Bhatnagar, V. (2006). A Unified Approach for Discovery of Interesting Association Rules in Medical Databases. In: Perner, P. (eds) Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining. ICDM 2006. Lecture Notes in Computer Science(), vol 4065. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11790853_5

Download citation

  • DOI: https://doi.org/10.1007/11790853_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36036-0

  • Online ISBN: 978-3-540-36037-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics