Nothing Special   »   [go: up one dir, main page]

Skip to main content

Analyzing the Genetic Operations of an Evolutionary Query Optimizer

  • Conference paper
Flexible and Efficient Information Handling (BNCOD 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 4042))

Included in the following conference series:

Abstract

In this paper we analyze the importance of the operations in a genetic programming-based optimizer. Among the several conclusions, we show that crossover operations have a larger impact on the quality of the best obtained execution plan than mutation operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bennett, K., Ferris, M.C., Ioannidis, Y.E.: A genetic algorithm for database query optimization. In: Belew, R., Booker, L. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, CA, pp. 400–407. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  2. Ioannidis, Y.E., Kang, Y.: Randomized algorithms for optimizing large join queries. In: SIGMOD 1990: Proc. of the 1990 ACM SIGMOD international conference on Management of data, pp. 312–321. ACM Press, New York (1990)

    Chapter  Google Scholar 

  3. Muntes, V., Aguilar, J., Zuzarte, C., Markl, V., Larriba, J.L.: Genetic evolution in query optimization: a complete analysis of a genetic optimizer. Technical Report UPC-DAC-RR-2005-21, Dept. d’Arqu. de Comp. Universitat Politecnica de Catalunya (2005), http://www.dama.upc.edu

  4. Muntes-Mulero, V., Aguilar-Saborit, J., Zuzarte, C., Larriba-Pey, J.-L.: Cgo: a sound genetic optimizer for cyclic query graphs. In: Proceedings of the International Conference on Computer Science (May 2006) (to be published)

    Google Scholar 

  5. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and randomized optimization for the join ordering problem. VLDB Journal: Very Large Data Bases 6(3), 191–208 (1997)

    Article  Google Scholar 

  6. Stillger, M., Spiliopoulou, M.: Genetic programming in database query optimization. In: Koza, J.R., Goldberg, D.E., Fogel, D.B., Riolo, R.L. (eds.) Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, July 28–31, 1996, pp. 388–393. MIT Press, Cambridge (1996)

    Google Scholar 

  7. Swami, A., Gupta, A.: Optimization of large join queries. In: SIGMOD 1988: Proceedings of the 1988 ACM SIGMOD international conference on Management of data, pp. 8–17. ACM Press, New York (1988)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Muntés-Mulero, V., Aguilar-Saborit, J., Zuzarte, C., Markl, V., Larriba-Pey, JL. (2006). Analyzing the Genetic Operations of an Evolutionary Query Optimizer. In: Bell, D.A., Hong, J. (eds) Flexible and Efficient Information Handling. BNCOD 2006. Lecture Notes in Computer Science, vol 4042. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11788911_21

Download citation

  • DOI: https://doi.org/10.1007/11788911_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35969-2

  • Online ISBN: 978-3-540-35971-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics