Abstract
The oracle identification problem (OIP) was introduced by Ambainis et al. [3]. It is given as a set S of M oracles and a blackbox oracle f. Our task is to figure out which oracle in S is equal to the blackbox f by making queries to f. OIP includes several problems such as the Grover Search as special cases. In this paper, we improve the algorithms in [3] by providing a mostly optimal upper bound of query complexity for this problem: (i) For any oracle set S such that \(|S| \le 2^{N^d}\) (d < 1), we design an algorithm whose query complexity is \(O(\sqrt{N\log{M}/\log{N}})\), matching the lower bound proved in [3]. (ii) Our algorithm also works for the range between \(2^{N^d}\) and 2N/logN (where the bound becomes O(N)), but the gap between the upper and lower bounds worsens gradually. (iii) Our algorithm is robust, namely, it exhibits the same performance (up to a constant factor) against the noisy oracles as also shown in the literatures [2, 11, 18] for special cases of OIP.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proc. of STOC 2003, pp. 200–209 (2003)
Adcock, M., Cleve, R.: A quantum Goldreich-Levin theorem with cryptographic applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 323–334. Springer, Heidelberg (2002)
Ambainis, A., Iwama, K., Kawachi, A., Masuda, H., Putra, R.H., Yamashita, S.: Quantum identification of boolean oracles. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 105–116. Springer, Heidelberg (2004)
Ambainis, A., Iwama, K., Kawachi, A., Putra, R.H., Yamashita, S.: Robust quantum algorithm for oracle identification. Preprint available at quant-ph/0411204
Atici, A., Servedio, R.A.: Improved bounds on quantum learning algorithms. Quantum Information Processing, 1–32 (January 2006)
Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. In: IEEE Symposium on Foundations of Computer Science, pp. 352–361 (1998)
Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)
Biron, D., Biham, O., Biham, E., Grassl, M., Lidar, D.A.: Generalized Grover search algorithm for arbitrary initial amplitude distribution. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 140–147. Springer, Heidelberg (1999)
Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4-5), 493–505 (1998)
Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. AMS Contemporary Mathematics Series Millennium Volume entitled Quantum Computation & Information 305, 53–74 (2002)
Buhrman, H., Newman, I., Röhrig, H., de Wolf, R.: Robust quantum algorithms and polynomials. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 593–604. Springer, Heidelberg (2005)
Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. In: Proc. of STOC 2003, pp. 531–540 (2003)
Chi, D.P., Kim, J.: Quantum database searching by a single query. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 148–151. Springer, Heidelberg (1999)
Cohen, G.D., Honkala, I., Litsyn, S.N., Lobstein, A.: Covering codes. North-Holland, Amsterdam (1997)
Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: How many functions can be distinguished with k quantum queries? Phys. Rev. A 60(6), 4331–4333 (1999) (quant-ph/9901012)
Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. In: Proc. of FOCS 1996, pp. 339–348 (1996)
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. of STOC 1996, pp. 212–218 (1996)
Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)
Hunziker, M., Meyer, D.A., Park, J., Pommersheim, J., Rothstein, M.: The geometry of quantum learning. Quantum Information Processing (to appear) arXiv:quant-ph/0309059
Krauthgamer, R., Sasson, O.: Property testing of data dimensionality. In: Proc. of SODA 2003, pp. 18–27 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ambainis, A., Iwama, K., Kawachi, A., Raymond, R., Yamashita, S. (2006). Improved Algorithms for Quantum Identification of Boolean Oracles. In: Arge, L., Freivalds, R. (eds) Algorithm Theory – SWAT 2006. SWAT 2006. Lecture Notes in Computer Science, vol 4059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785293_27
Download citation
DOI: https://doi.org/10.1007/11785293_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35753-7
Online ISBN: 978-3-540-35755-1
eBook Packages: Computer ScienceComputer Science (R0)