Nothing Special   »   [go: up one dir, main page]

Skip to main content

Improved Algorithms for Quantum Identification of Boolean Oracles

  • Conference paper
Algorithm Theory – SWAT 2006 (SWAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4059))

Included in the following conference series:

  • 994 Accesses

Abstract

The oracle identification problem (OIP) was introduced by Ambainis et al. [3]. It is given as a set S of M oracles and a blackbox oracle f. Our task is to figure out which oracle in S is equal to the blackbox f by making queries to f. OIP includes several problems such as the Grover Search as special cases. In this paper, we improve the algorithms in [3] by providing a mostly optimal upper bound of query complexity for this problem: (i) For any oracle set S such that \(|S| \le 2^{N^d}\) (d < 1), we design an algorithm whose query complexity is \(O(\sqrt{N\log{M}/\log{N}})\), matching the lower bound proved in [3]. (ii) Our algorithm also works for the range between \(2^{N^d}\) and 2N/logN (where the bound becomes O(N)), but the gap between the upper and lower bounds worsens gradually. (iii) Our algorithm is robust, namely, it exhibits the same performance (up to a constant factor) against the noisy oracles as also shown in the literatures [2, 11, 18] for special cases of OIP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aaronson, S., Ambainis, A.: Quantum search of spatial regions. In: Proc. of STOC 2003, pp. 200–209 (2003)

    Google Scholar 

  2. Adcock, M., Cleve, R.: A quantum Goldreich-Levin theorem with cryptographic applications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 323–334. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Ambainis, A., Iwama, K., Kawachi, A., Masuda, H., Putra, R.H., Yamashita, S.: Quantum identification of boolean oracles. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 105–116. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Ambainis, A., Iwama, K., Kawachi, A., Putra, R.H., Yamashita, S.: Robust quantum algorithm for oracle identification. Preprint available at quant-ph/0411204

    Google Scholar 

  5. Atici, A., Servedio, R.A.: Improved bounds on quantum learning algorithms. Quantum Information Processing, 1–32 (January 2006)

    Google Scholar 

  6. Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. In: IEEE Symposium on Foundations of Computer Science, pp. 352–361 (1998)

    Google Scholar 

  7. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Biron, D., Biham, O., Biham, E., Grassl, M., Lidar, D.A.: Generalized Grover search algorithm for arbitrary initial amplitude distribution. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 140–147. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46(4-5), 493–505 (1998)

    Article  Google Scholar 

  10. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. AMS Contemporary Mathematics Series Millennium Volume entitled Quantum Computation & Information 305, 53–74 (2002)

    Google Scholar 

  11. Buhrman, H., Newman, I., Röhrig, H., de Wolf, R.: Robust quantum algorithms and polynomials. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 593–604. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. In: Proc. of STOC 2003, pp. 531–540 (2003)

    Google Scholar 

  13. Chi, D.P., Kim, J.: Quantum database searching by a single query. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp. 148–151. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Cohen, G.D., Honkala, I., Litsyn, S.N., Lobstein, A.: Covering codes. North-Holland, Amsterdam (1997)

    MATH  Google Scholar 

  15. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: How many functions can be distinguished with k quantum queries? Phys. Rev. A 60(6), 4331–4333 (1999) (quant-ph/9901012)

    Google Scholar 

  16. Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. In: Proc. of FOCS 1996, pp. 339–348 (1996)

    Google Scholar 

  17. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. of STOC 1996, pp. 212–218 (1996)

    Google Scholar 

  18. Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 291–299. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Hunziker, M., Meyer, D.A., Park, J., Pommersheim, J., Rothstein, M.: The geometry of quantum learning. Quantum Information Processing (to appear) arXiv:quant-ph/0309059

    Google Scholar 

  20. Krauthgamer, R., Sasson, O.: Property testing of data dimensionality. In: Proc. of SODA 2003, pp. 18–27 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ambainis, A., Iwama, K., Kawachi, A., Raymond, R., Yamashita, S. (2006). Improved Algorithms for Quantum Identification of Boolean Oracles. In: Arge, L., Freivalds, R. (eds) Algorithm Theory – SWAT 2006. SWAT 2006. Lecture Notes in Computer Science, vol 4059. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785293_27

Download citation

  • DOI: https://doi.org/10.1007/11785293_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35753-7

  • Online ISBN: 978-3-540-35755-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics