Nothing Special   »   [go: up one dir, main page]

Skip to main content

Face Recognition Using Correlation Between Illuminant Context

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

Abstract

In this paper investigate how to aggregation method from face recognition varying environments. Face Images clustering is enhanced face recognition performance. Face image is clustered several cluster unsupervised or statistical method and we recognize using correlation between clusters. In this paper we adopted recognition algorithm by aggregation method. In this paper we present the recognition system using the table of fitness correlations between clusters for combining the results from the individual clusters. By training the different classifiers with different clusters of training data and adopting fusion method considering fitness correlation between clusters we found out better recognition performance than combining classifiers fed with same data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kuncheva, L.I.: Using measures of similarity and inclusion for multiple classifier fusion by decision templates. Fuzzy Sets and Systems 122(3), 401–407 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ludmilla, I.K.: Clustering-and-selection model for classifier combination. In: 4th International Conference on Knowledge-Based Intelligent Engineering Systems (2000)

    Google Scholar 

  3. Kuncheva, L.I., Bezdek, J.C., Duin, R.P.W.: Decision templates for multiple classifier fusion: An experimental comparison. Pattern Recognition, 299–314 (2001)

    Google Scholar 

  4. Kuncheva, L.: Switching Between Selection and Fusion in Combining Classifiers. AnExperiment. IEEE Transaction on Systems, Man and Cybernetics—PARTB 32(2), 146–156 (2002)

    Article  Google Scholar 

  5. George, D.: The small sample bias of the Gini coefficient: Results and implications for empirical research. Review of Economics and Statistics 85(1), 226–234 (2003)

    Article  Google Scholar 

  6. Jobson, D.J., Rahman, Z.-u., Woodell, G.A.: The Spatial Aspect of Color and Scientific Implications of Retinex Image Processing. Proc. SPIE 4388, 117–128 (2001)

    Article  Google Scholar 

  7. Funt, B., Barnard, K.: Luminance-Based Multi-Scale Retinex. normalize proceedings. In: AIC Colour 97 8th Congress of the International Colour Association (1997)

    Google Scholar 

  8. Lim, L., Suen, C.Y.: Optimal combination of pattern classifiers. Pattern Recognition Letters 16, 945–954 (1995)

    Article  Google Scholar 

  9. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. IEEE Trans. Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)

    Article  Google Scholar 

  10. Bay, S.D.: Nearest neighbor classification from multiple feature subsets. Intelligent Data Analysis 3(3), 191–209 (1999)

    Article  Google Scholar 

  11. Indyk, P.: Approximate nearest neighbor algorithm for frechet distance via product metrics. In: Proc. Of Symposium on Computational Geometry, p. 27 (2002)

    Google Scholar 

  12. Ramuhalli, P., Polikar, R., Udpa, L., Udpa, S.: Fuzzy ARTMAP network with evolutionary learning. In: Proc. of IEEE 25th Int. Conf. On Acoustics, Speech and Signal Processing (ICASSP 2000), Istanbul, Turkey, vol. 6, pp. 3466–3469 (2000)

    Google Scholar 

  13. Phillips, P.: The FERET database and evoluation procedure for face recognition  algorithms. Image and Vision Computing 16(5), 295–306 (1999)

    Article  Google Scholar 

  14. http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nam, M.Y., Bayarsaikhan, B., Rhee, P.K. (2006). Face Recognition Using Correlation Between Illuminant Context. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_87

Download citation

  • DOI: https://doi.org/10.1007/11785231_87

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics