Abstract
Intuitionistic fuzzy sets, originally introduced by Atanassov, allow for representation both degrees of membership and degrees of non–membership of an element to a set. In this paper we present a generalisation of Pawlak’s rough approximation operations taking Atanassov’s structures as a basis. A special class of residuated lattices is taken as a basic algebraic structure. In the signature of these algebras we have abstract counterparts of two main classes of fuzzy implications. We show that basing on these lattices we can express degrees of weak and strong certainties and possibilities of membership and non–membership of an element to a set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)
Atanassov, K.T.: Intuitionistic Fuzzy Sets. Physica–Verlag, Heidelberg (1999)
Chakrabarty, K., Gedeon, T., Koczy, L.: Intuitionistic fuzzy rough sets. In: Proceedings of 4th Joint Conference on Information Sciences JCIS 1998, pp. 211–214 (1998)
Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)
Coker, D.: Fuzzy rough sets and intuitionistic L–fuzzy sets. Fuzzy Sets and Systems 96, 381–383 (1998)
Cornelis, C., De Cock, M., Kerre, E.E.: Intuitionistic Fuzzy Rough Sets: at the Crossroads of Imperfect Knowledge. Expert Systems 20(5), 260–269 (2003)
Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets and Systems 133(2), 227–235 (2003)
Dilworth, R.P., Ward, N.: Residuated lattices. Transactions of the American Mathematical Society 45, 335–354 (1939)
Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy set theory – The case of “Intuitionistic Fuzzy Sets”. Fuzzy Sets and Systems 156, 485–491 (2005)
Gougen, J.A.: L–fuzzy sets. Journal of Mathematical Analysis and Applications 18, 145–174 (1967)
Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice–Hall, Englewood Cliffs (1995)
Pal, S.K., Skowron, A.: Rough Fuzzy Hybridization: A New Trend in Decision Making. Springer, Heidelberg (1999)
Pawlak, Z.: Rough sets. Int. Journal of Computer and Information Science 1(5), 341–356 (1982)
Pawlak, Z.: Rough Sets — Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Radzikowska, A.M., Kerre, E.E.: A comparative study of fuzzy rough sets. Fuzzy Sets and Systems 126, 137–155 (2002)
Radzikowska, A.M., Kerre, E.E.: On L–valued fuzzy rough sets. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 526–531. Springer, Heidelberg (2004)
Radzikowska, A.M., Kerre, E.E.: Fuzzy rough sets based on residuated lattices, in: Transactions on Rough Sets II, Peters J. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 278–297. Springer, Heidelberg (2004)
Radzikowska, A.M., Kerre, E.E.: Lattice–based fuzzy information relations and operators. In: De Baets, B., De Caluve, R., Kacprzyk, J., De Tré, G., Zadrożny, S. (eds.) Proceedings of EUROFUSE 2004, EXIT, Warsaw, Poland, pp. 433–443 (2004)
Radzikowska, A.M., Kerre, E.E.: Characterisations of main classes of fuzzy relations using fuzzy modal operators. Fuzzy Sets and Systems 152(2), 223–247 (2005)
Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North Holland, Amsterdam (1983)
Thiele, H.: On the definition of modal operators in fuzzy logic. In: Proceedings of International Symposium of Multiple–Valued Logics ISMVL 1993, pp. 62–67 (1993)
Turunen, E.: Mathematics Behind Fuzzy Logic. Springer, Heidelberg (1999)
Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–358 (1965)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Radzikowska, A.M. (2006). Rough Approximation Operations Based on IF Sets. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_56
Download citation
DOI: https://doi.org/10.1007/11785231_56
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35748-3
Online ISBN: 978-3-540-35750-6
eBook Packages: Computer ScienceComputer Science (R0)