Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Inertia Weight Particle Swarm Optimization

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

Abstract

Adaptive inertia weight is proposed to rationally balance the global exploration and local exploitation abilities for particle swarm optimization. The resulting algorithm is called adaptive inertia weight particle swarm optimization algorithm (AIW-PSO) where a simple and effective measure, individual search ability (ISA), is defined to indicate whether each particle lacks global exploration or local exploitation abilities in each dimension. A transform function is employed to dynamically calculate the values of inertia weight according to ISA. In each iteration during the run, every particle can choose appropriate inertia weight along every dimension of search space according to its own situation. By this fine strategy of dynamically adjusting inertia weight, the performance of PSO algorithm could be improved. In order to demonstrate the effectiveness of AIW-PSO, comprehensive experiments were conducted on three well-known benchmark functions with 10, 20, and 30 dimensions. AIW-PSO was compared with linearly decreasing inertia weight PSO, fuzzy adaptive inertia weight PSO and random number inertia weight PSO. Experimental results show that AIW-PSO achieves good performance and outperforms other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceeding of IEEE International Conference on Neural Networks (ICNN 1995), Australia, vol. 4, pp. 1942–1947. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  2. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Transactions On Evolutionary Computation 8, 225–239 (2004)

    Article  Google Scholar 

  3. Peram, T., Veeramachaneni, K., Mohan, C.K.: Fitness-distance-ratio based particle swarm optimization. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium, pp. 174–181 (2003)

    Google Scholar 

  4. Silva, A., Neves, A., Costa, E.: An empirical comparison of particle swarm and predator prey optimisation. In: O’Neill, M., Sutcliffe, R.F.E., Ryan, C., Eaton, M., Griffith, N.J.L. (eds.) AICS 2002. LNCS (LNAI), vol. 2464, pp. 103–110. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the IEEE Conference on Evolutionary Computation, ICEC, Singapore, pp. 69–73 (1998)

    Google Scholar 

  6. Zwe-Lee, G.: Particle swarm optimization to solving the economic dispatch considering the generator constraints. IEEE Transactions on Power Systems 18, 1187–1195 (2003)

    Article  Google Scholar 

  7. Zwe-Lee, G.: A particle swarm optimization approach for optimum design of pid controller in avr system. IEEE Transactions on Energy Conversion 19, 384–391 (2004)

    Article  Google Scholar 

  8. Jinho, P., Kiyong, C., Allstot, D.: Parasitic-aware rf circuit design and optimization. IEEE Transactions on Circuits and Systems 51, 1953–1965 (2004)

    Article  Google Scholar 

  9. Baskar, S., Zheng, R.T., Alphones, A., Ngo, N.Q., Suganthan, P.N.: Particle swarm optimization for the design of low-dispersion fiber bragg gratings. IEEE Photonics Technology Letters 17, 615–617 (2005)

    Article  Google Scholar 

  10. Abido, M.A.: Optimal design of power-system stabilizers using particle swarm optimization. IEEE Transactions on Energy Conversion 17, 406–413 (2002)

    Article  Google Scholar 

  11. Angeline, P.J.: Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. In: Porto, V.W., Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 601–610. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Shi, Y., Eberhart, R.C.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC2001, COEX, World Trade Center, 159, Samseong-dong, Gangnam-gu, Seoul, Korea, pp. 101–106. IEEE Press, Los Alamitos (2001)

    Google Scholar 

  13. Zhang, L., Yu, H., Hu, S.: A new approach to improve particle swarm optimization. In: Genetic and Evolutionary Computation, pp. 134–139 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qin, Z., Yu, F., Shi, Z., Wang, Y. (2006). Adaptive Inertia Weight Particle Swarm Optimization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_48

Download citation

  • DOI: https://doi.org/10.1007/11785231_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics