Abstract
Boosting is one of the most popular methods of multiple classification. In the paper we propose a method for merging several logical-type neuro-fuzzy systems that come from boosting ensemble into one neuro-fuzzy system. Thanks to this we can use all rule-bases as one system.
This work was supported in part by the Foundation for Polish Science (Professorial Grant 2005-2008) and the Polish State Committee for Scientific Research (Grant Nr T11C 04827 and Grant T11A Nr 01427).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Babuska, R.: Fuzzy Modeling For Control. Kluwer Academic Press, Boston (1998)
Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, University of California, Department of Information and Computer Science (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html+
Breiman, L.: Bias, variance, and arcing classifiers, Technical Report 460, Statistics Department, University of California (July 1997)
Cpałka, K.: A Flexible Connectionist System. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 618–625. Springer, Heidelberg (2004)
Jang, R.J.-S., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing. In: A Computational Approach to Learning and Machine Intelligence, Prentice Hall, Upper Saddle River (1997)
Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R.: Merging Ensemble of Neuro-fuzzy Systems. In: Vancouver, B.C. (ed.) 2006 IEEE International Conference on Fuzzy Systems, IEEE World Congress on Computational Intelligence, Vancouver, BC, Canada (2006)
Kuncheva, L.I.: Combining Pattern Classifiers, Methods and Algorithms. John Wiley & Sons, Chichester (2004)
Kuncheva, L.I.: Fuzzy Classifier Design. Physica Verlag, Heidelberg (2000)
Meir, R., Rätsch, G.: An introduction to boosting and leveraging. In: Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS (LNAI), vol. 2600, pp. 119–184. Springer, Heidelberg (2003)
Nauck, D., Klawon, F., Kruse, R.: Foundations of Neuro - Fuzzy Systems. John Wiley, Chichester (1997)
Nauck, D., Kruse, R.: How the Learning of Rule Weights Affects the Interpretability of Fuzzy Systems. In: Proc. of 1998 IEEE World Congress on Computational Intelligence, FUZZ-IEEE, Alaska, pp. 1235–1240 (1998)
Pedrycz, W.: Fuzzy Control and Fuzzy Systems. Research Studies Press, London (1989)
Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)
Rutkowski, L.: Flexible Neuro-Fuzzy Systems. Kluwer Academic Publishers, Dordrecht (2004)
Rutkowski, L., Cpałka, K.: Designing and learning of adjustable quasi triangular norms with applications to neuro fuzzy systems. IEEE Trans. on Fuzzy Systems 13, 140–151 (2005)
Rutkowski, L., Cpałka, K.: Flexible neuro-fuzzy systems. IEEE Transactions on Neural Networks 14, 554–574 (2003)
Scherer, R., Rutkowski, L.: Connectionist Fuzzy Relational Systems. In: Hagamuge, S., Wang, L.P. (eds.) Studies in Computational Intelligence, Computational Intelligence for Modelling and Control, pp. 35–47. Springer, Heidelberg (2005)
Schapire, R.E.: A brief introduction to boosting. In: Proc. of the Sixteenth International Joint Conference on Artificial Intelligence (1999)
Wang, L.-X.: Adaptive Fuzzy Systems And Control. PTR Prentice Hall, Englewood Cliffs (1994)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R. (2006). Combining Logical-Type Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_26
Download citation
DOI: https://doi.org/10.1007/11785231_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35748-3
Online ISBN: 978-3-540-35750-6
eBook Packages: Computer ScienceComputer Science (R0)