Nothing Special   »   [go: up one dir, main page]

Skip to main content

Speed Up of the SAMANN Neural Network Retraining

  • Conference paper
Artificial Intelligence and Soft Computing – ICAISC 2006 (ICAISC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4029))

Included in the following conference series:

Abstract

Sammon’s mapping is a well-known procedure for mapping data from a higher-dimensional space onto a lower-dimensional one. The original algorithm has a disadvantage. It lacks generalization, which means that new points cannot be added to the obtained map without recalculating it. SAMANN neural network, that realizes Sammon’s algorithm, provides a generalization capability of projecting new data. Speed up of the SAMANN network retraining when the new data points appear has been analyzed in this paper. Two strategies for retraining the neural network that realizes the multidimensional data visualization have been proposed and then the analysis has been made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24, 417–441, 498–520 (1993)

    Article  Google Scholar 

  2. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  3. Jain, A.K., Mao, J.: Artificial neural network for nonlinear projection of multivariate data. In: Proc. IEEE International Joint Conference Neural Network, vol. 3, pp. 335–340 (1992)

    Google Scholar 

  4. Jain, A.K., Duin, R., Mao, J.: Statistical pattern recognition: A review. IEEE Trans. Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  5. Medvedev, V., Dzemyda, G.: Optimization of the local search in the training for SAMANN neural network. Journal of Global Optimization (to appear)

    Google Scholar 

  6. Mao, J., Jain, A.K.: Artificial neural networks for feature extraction and multivariate data projection. IEEE Trans. Neural Networks 6, 296–317 (1995)

    Article  Google Scholar 

  7. de Ridder, D., Duin, R.P.W.: Sammon’s mapping using neural networks: A comparison. Pattern Recognition Letters 18, 1307–1316 (1997)

    Article  Google Scholar 

  8. Sammon, J.J.: A nonlinear mapping for data structure analysis. IEEE Trans. Computer C-18(5), 401–409 (1969)

    Article  Google Scholar 

  9. Fisher, R.A.: The use of multiple measurements in taxonomic problem. Annual Eugenics 7, Part II, 179–188 (1936)

    Google Scholar 

  10. Australian Credit Approval, http://www.niaad.liacc.up.pt/old/statlog/datasets/australian/australian.doc.html

  11. Torgerson, W.S.: Multidimensional scaling, I: theory and methods. Psychometrica 17, 401–419 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  13. Dzemyda, G.: Visualization of a set of parameters characterized by their correlation matrix. Computational Statistics & Data Analysis 36(1), 15–30 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dzemyda, G., Kurasova, O.: Heuristic approach for minimizing the projection error in the integrated mapping. European Journal of Operational Research 171, 859–878 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dzemyda, G., Kurasova, O.: Comparative analysis of the graphical result presentation in the SOM software. Informatica 13(3), 275–286 (2002)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Medvedev, V., Dzemyda, G. (2006). Speed Up of the SAMANN Neural Network Retraining. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds) Artificial Intelligence and Soft Computing – ICAISC 2006. ICAISC 2006. Lecture Notes in Computer Science(), vol 4029. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11785231_11

Download citation

  • DOI: https://doi.org/10.1007/11785231_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35748-3

  • Online ISBN: 978-3-540-35750-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics