Nothing Special   »   [go: up one dir, main page]

Skip to main content

Automatic Discovery of Regular Expression Patterns Representing Negated Findings in Medical Narrative Reports

  • Conference paper
Next Generation Information Technologies and Systems (NGITS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4032))

Abstract

Substantial medical data such as discharge summaries and operative reports are stored in textual form. Databases containing free-text clinical narratives reports often need to be retrieved to find relevant information for clinical and research purposes. Terms that appear in these documents tend to appear in different contexts. The context of negation, a negative finding, is of special importance, since many of the most frequently described findings are those denied by the patient or subsequently “ruled out.” Hence, when searching free-text narratives for patients with a certain medical condition, if negation is not taken into account, many of the documents retrieved will be irrelevant. In this paper we examine the applicability of a new pattern learning method for automatic identification of negative context in clinical narratives reports. We compare the new algorithm to previous methods proposed for the same task of similar medical narratives and show its advantages. The new algorithm can be applied also to further context identification and information extraction tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aronow, D., Feng, F., Croft, W.B.: Ad Hoc Classification of Radiology Reports. Journal of the American Medical Informatics Association 6(5), 393–411 (1999)

    Google Scholar 

  2. Averbuch, M., Karson, T., Ben-Ami, B., Maimon, O., Rokach, L.: Context-Sensitive Medical Information Retrieval. In: MEDINFO 2004, San Francisco, CA, September 2004, pp. 282–286. IOS Press, Amsterdam (2004)

    Google Scholar 

  3. Cessie, S., van Houwelingen, J.C.: Ridge Estimators in Logistic Regression. Applied Statistics 41(1), 191–201 (1997)

    Article  Google Scholar 

  4. Chapman, W.W., Bridewell, W., Hanbury, P., Cooper, G.F., Buchanann, B.G.: A Simple Algorithm for Identifying Negated Findings and Diseases in Discharge Summaries. J. Biomedical Info. 34, 301–310 (2001)

    Article  Google Scholar 

  5. Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    MATH  Google Scholar 

  6. Fiszman, M., Chapman, W.W., Aronsky, D., Evans, R.S., Haug, P.J.: Automatic detection of acute bacterial pneumonia from chest X-ray reports. J. Am. Med. Inform. Assoc. 7, 593–604 (2000)

    Google Scholar 

  7. Fiszman, M., Haug, P.J.: Using medical language processing to support real-time evaluation of pneumonia guidelines. In: Proc. AMIA Symp., pp. 235–239 (2000)

    Google Scholar 

  8. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Machine Learning: Proceedings of the Thirteenth International Conference, pp. 325–332 (1996)

    Google Scholar 

  9. Friedman, C., Alderson, P., Austin, J., Cimino, J., Johnson, S.: A General Natural-Language Text Processor for Clinical Radiology. Journal of the American Medical Informatics Association 1(2), 161–174 (1994)

    Google Scholar 

  10. Hall, M.: Correlation- based Feature Selection for Machine Learning. Ph.D. Thesis, University of Waikato (1999)

    Google Scholar 

  11. Hersh, W.R., Hickam, D.H.: Information retrieval in medicine: the SAPHIRE experience. J. of the Am. Society of Information Science 46, 743–747 (1995)

    Article  Google Scholar 

  12. Hripcsak, G., Knirsch, C.A., Jain, N.L., Stazesky, R.C., Pablos-mendez, A., Fulmer, T.: A health in-formation network for managing innercity tuberculosis: bridging clinical care, public health, and home care. Comput. Biomed. Res. 32, 67–76 (1999)

    Article  Google Scholar 

  13. Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murth, K.R.K.: Improvements to Platt’s SMO Algorithm for SVM Classifier Design. Neural Computation 13(3), 637–649 (2001)

    Article  MATH  Google Scholar 

  14. Lindbergh, D.A.B., Humphreys, B.L.: The Unified Medical Language System. In: van Bemmel, J.H., McCray, A.T. (eds.) Yearbook of Medical Informatics, pp. 41–51. IMIA, Netherlands (1993)

    Google Scholar 

  15. Mutalik, P.G., Deshpande, A., Nadkarni, P.M.: Use of general-purpose negation detection to augment concept indexing of medical documents: a quantitative study using the UMLS. J. Am. Med. Inform. Assoc. 8(6), 598–609 (2001)

    Google Scholar 

  16. Myers, E.: An O(ND) difference algorithm and its variations. Algorithmica 1(2), 251 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nadkarni, P.: Information retrieval in medicine: overview and applications. J. Postgraduate Med. 46(2) (2000)

    Google Scholar 

  18. Pratt, A.W.: Medicine, computers, and linguistics. Advanced Biomedical Engineering 3, 97–140 (1973)

    MathSciNet  Google Scholar 

  19. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  20. Rokach, L., Averbuch, M., Maimon, O.: Information Retrieval System for Medical Narrative Reports. In: Christiansen, H., Hacid, M.-S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2004. LNCS (LNAI), vol. 3055, pp. 217–228. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romano, R., Rokach, L., Maimon, O. (2006). Automatic Discovery of Regular Expression Patterns Representing Negated Findings in Medical Narrative Reports. In: Etzion, O., Kuflik, T., Motro, A. (eds) Next Generation Information Technologies and Systems. NGITS 2006. Lecture Notes in Computer Science, vol 4032. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780991_26

Download citation

  • DOI: https://doi.org/10.1007/11780991_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35472-7

  • Online ISBN: 978-3-540-35473-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics