Nothing Special   »   [go: up one dir, main page]

Skip to main content

Efficient Database Analysis Using VSOP Calculator Based on Zero-Suppressed BDDs

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4012))

Included in the following conference series:

  • 714 Accesses

Abstract

Manipulation of large-scale combinatorial data is one of the important fundamental technique for web information retrieval, integration, and mining. Recently, we proposed a new approach based on Zero-suppressed BDDs (Binary Decision Diagrams) for efficient database analysis. In this paper, we present VSOP program developed for calculating combinatorial item sets specified by symbolic expressions. Based on ZBDD techniques, VSOP can efficiently handle large-scale sum-of-products expressions with a number of item symbols. VSOP supports not only Boolean set operations but also numerical arithmetic operations based on Valued-Sum-Of-Products algebra, such as addition, subtraction, multiplication, division, numerical comparison, etc. VSOP will facilitate research and development for various database analysis problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining Association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proc. of the 1993 ACM SIGMOD International Conference on Management of Data. SIGMOD Record, vol. 22(2), pp. 207–216. ACM Press, New York (1993)

    Chapter  Google Scholar 

  2. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35(8), 677–691 (1986)

    Article  Google Scholar 

  3. Goethals, B.: Survey on Frequent Pattern Mining (Pdf) Manuscript (2003), http://www.adrem.ua.ac.be/~goethals/publications/survey.ps

  4. Goethals, B., Javeed Zaki, M. (eds.): Frequent Itemset Mining Dataset Repository, Frequent Itemset Mining Implementations (FIMI 2003) (2003), http://fimi.cs.helsinki.fi/data/

  5. Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery 8(1), 53–87 (2004)

    Article  MathSciNet  Google Scholar 

  6. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems. In: Proc. 30th ACM/IEEE Design Automation Conf. (DAC-1993), pp. 272–277 (1993)

    Google Scholar 

  7. Minato, S.: Binary Decision Diagrams and Applications for VLSI CAD. Kluwer Academic Publishers, Dordrecht (1996)

    Book  Google Scholar 

  8. Minato, S.: Zero-suppressed BDDs and Their Applications. International Journal on Software Tools for Technology Transfer (STTT) 3(2), 156–170 (2001)

    Article  Google Scholar 

  9. Minato, S., Arimura, H.: Efficient Method of Combinatorial Item Set Analysis Based on Zero-Suppressed BDDs. In: Proc. of IEEE International Workshop on Challenges in Web Information Retrieval and Integration (WIRI-2005), April 2005, pp. 4–11 (2005)

    Google Scholar 

  10. Minato, S.: VSOP (Valued-Sum-Of-Products) Calculator Based on Zero-Suppressed BDDs, TCS Technical Report Series A of Division of Computer Science, Hokkaido Univ., TCS-TR-A-05-3 (May 2005), http://www-alg.ist.hokudai.ac.jp/tra.html

  11. Minato, S.-i.: VSOP (Valued-Sum-of-Products) Calculator for Knowledge Processing Based on Zero-Suppressed BDDs. In: Jantke, K.P., Lunzer, A., Spyratos, N., Tanaka, Y. (eds.) Federation over the Web. LNCS (LNAI), vol. 3847, pp. 40–58. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Baeza-Yates, R., Ribiero-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)

    Google Scholar 

  13. Wegener, I.: Branching Programs and Binary Decision Diagrams. SIAM Monographs on Discrete Mathematics and Applications 4 (2000)

    Google Scholar 

  14. Zaki, M.J.: Scalable Algorithms for Association Mining. IEEE Trans. Knowl. Data Eng. 12(2), 372–390 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Minato, Si. (2006). Efficient Database Analysis Using VSOP Calculator Based on Zero-Suppressed BDDs. In: Washio, T., Sakurai, A., Nakajima, K., Takeda, H., Tojo, S., Yokoo, M. (eds) New Frontiers in Artificial Intelligence. JSAI 2005. Lecture Notes in Computer Science(), vol 4012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11780496_20

Download citation

  • DOI: https://doi.org/10.1007/11780496_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35470-3

  • Online ISBN: 978-3-540-35471-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics