Nothing Special   »   [go: up one dir, main page]

Skip to main content

Bioinformatics Integration Framework for Metabolic Pathway Data-Mining

  • Conference paper
Advances in Applied Artificial Intelligence (IEA/AIE 2006)

Abstract

A vast amount of bioinformatics information is continuously being introduced to different databases around the world. Handling the various applications used to study this information present a major data management and analysis challenge to researchers. The present work investigates the problem of integrating heterogeneous applications and databases towards providing a more efficient data-mining environment for bioinformatics research. A framework is proposed and GeXpert, an application using the framework towards metabolic pathway determination is introduced. Some sample implementation results are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arredondo, T., Neelakanta, P.S., DeGroff, D.: Fuzzy Attributes of a DNA Complex: Development of a Fuzzy Inference Engine for Codon-’Junk’ Codon Delineation. Artif. Intell. Med. 35(1-2), 87–105 (2005)

    Article  Google Scholar 

  2. Barker, J., Thornton, J.: Software Engineering Challenges in bioinformatics. In: Proceedings of the 26th International Conference on Software Engineering. IEEE, Los Alamitos (2004)

    Google Scholar 

  3. Bernardi, M., Lapi, M., Leo, P., Loglisci, C.: Mining Generalized Association Rules on Biomedical Literature. In: Moonis, A., Esposito, F. (eds.) Innovations in Applied Artificial Intelligence. LNCS (LNAI), vol. 3353, pp. 500–509. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Brown, T.A.: Genomes. John Wiley and Sons, NY (1999)

    Google Scholar 

  5. Cary, M.P., Bader, G.D., Sander, C.: Pathway information for systems biology (Review Article). FEBS Lett. 579, 1815–1820 (2005)

    Article  Google Scholar 

  6. Claverlie, J.M.: Bioinformatics for Dummies. Wiley, Chichester (2003)

    Google Scholar 

  7. Cámara, B., Herrera, C., González, M., Couve, E., Hofer, B., Seeger, M.: From PCBs to highly toxic metabolites by the biphenyl pathway. Environ. Microbiol. (6), 842–850 (2004)

    Google Scholar 

  8. Cohen, J.: Computer Science and Bioinformatics. Commun. ACM 48(3), 72–79 (2005)

    Article  Google Scholar 

  9. Costa, M., Collins, R., Anterola, A., Cochrane, F., Davin, L., Lewis, N.: An in silico assessment of gene function and organization of the phenylpropanoid pathway metabolic networks in Arabidopsis thaliana and limitations thereof. Phytochem. 64, 1097–1112 (2003)

    Article  Google Scholar 

  10. CO-Drive project: http://hci.cs.concordia.ca/www/hcse/projects/CO-DRIVE/

  11. Durbin, R.: Biological Sequence Analysis, Cambridge, UK (2001)

    Google Scholar 

  12. Eclipse project: http://www.eclipse.org

  13. Entrez NCBI Database: www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Nucleotide

  14. Gardner, D.: Using genomics to help predict drug interactions. J. Biomed. Inform. 37, 139–146 (2004)

    Article  Google Scholar 

  15. GeXpert sourceforge page: http://sourceforge.net/projects/gexpert

  16. Javahery, H., Seffah, A., Radhakrishnan, T.: Beyond Power: Making Bioinformatics Tools User-Centered. Commun. ACM 47, 11 (2004)

    Article  Google Scholar 

  17. Jimenez, J.I., Miñambres, B., García, J., Díaz, E.: Genomic insights in the metabolism of aromatics compounds in Pseudomonas. In: Ramos, J.L. (ed.) Pseudomonas, vol. 3, pp. 425–462. Kluwer Academic Publishers, NY (2004)

    Chapter  Google Scholar 

  18. Larman, C.: Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development. Prentice Hall PTR, Englewood Cliffs (2004)

    Google Scholar 

  19. Loew, L.W., Schaff, J.C.: The Virtual Cell: a software environment for computational cell biology. Trends Biotechnol. 19, 10 (2001)

    Article  Google Scholar 

  20. Ma, H., Zeng, A.: Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19, 270–277 (2003)

    Article  Google Scholar 

  21. Magalhaes, J., Toussaint, O.: How bioinformatics can help reverse engineer human aging. Aging Res. Rev. 3, 125–141 (2004)

    Article  Google Scholar 

  22. Molidor, R., Sturn, A., Maurer, M., Trajanosk, Z.: New trends in bioinformatics: from genome sequence to personalized medicine. Exp. Gerontol. 38, 1031–1036 (2003)

    Article  Google Scholar 

  23. Neelakanta, P.S., Arredondo, T., Pandya, S., DeGroff, D.: Heuristics of AI-Based Search Engines for Massive Bioinformatic Data-Mining: An Example of Codon/Noncodon Delineation Search in a Binary DNA Sequence. In: Proceeding of IICAI (2003)

    Google Scholar 

  24. Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A., Palsson, B.O.: Metabolic Pathways in the Post-genome Era. Trends Biochem. Sci. 18, 5 (2003)

    Google Scholar 

  25. Pocock, M., Down, T., Hubbard, T.: BioJava: Open Source Components for Bioinformatics. ACM SIGBIO Newsletter 20(2), 10–12 (2000)

    Article  Google Scholar 

  26. Rojdestvenski, I.: VRML metabolic network visualizer. Comp. Bio. Med. 33 (2003)

    Google Scholar 

  27. SBML: Systems Biology Markup Language, http://sbml.org/index.psp

  28. Segal, T., Barnard, R.: Let the shoemaker make the shoes - An abstraction layer is needed between bioinformatics analysis, tools, data, and equipment: An agenda for the next 5 years. In: First Asia-Pacific Bioinformatics Conference, Australia (2003)

    Google Scholar 

  29. Seeger, M., Timmis, K.N., Hofer, B.: Bacterial pathways for degradation of polychlorinated biphenyls. Mar. Chem. 58, 327–333 (1997)

    Article  Google Scholar 

  30. Sun, J., Zeng, A.: IdentiCS - Identification of coding sequence and in silico reconstruction of the metabolic network directly from unannotated low-coverage bacterial genome sequence. BMC Bioinformatics 5(112) (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tomás, A.V. et al. (2006). Bioinformatics Integration Framework for Metabolic Pathway Data-Mining. In: Ali, M., Dapoigny, R. (eds) Advances in Applied Artificial Intelligence. IEA/AIE 2006. Lecture Notes in Computer Science(), vol 4031. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779568_98

Download citation

  • DOI: https://doi.org/10.1007/11779568_98

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35453-6

  • Online ISBN: 978-3-540-35454-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics