Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Efficient Indexing Technique for Computing High Dimensional Data Cubes

  • Conference paper
Advances in Web-Age Information Management (WAIM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4016))

Included in the following conference series:

Abstract

The computation of a data cube is one of the most essential but challenging issues in data warehousing and OLAP. Partition based algorithm is one of the efficient methods to compute data cubes on high dimensionality, low cardinality, and moderate size datasets, which exist in real applications like bioinformatics, statistics, and text processing. To deal with such high dimensional data cubes, we propose an efficient indexing technique consisting of a compressed bitmap index and two algorithms for cube constructing and querying. Experimental results show that our method saves at least 25% on storage space and about 30% on computation time compared with the Frag-Cubing algorithm.

Supported by the National Natural Science Foundation of China under Grant No.60473073, 60503036, 60573090.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. SIGMOD 26(1), 65–74 (1997)

    Article  Google Scholar 

  2. Agarwal, S., Agrawal, R., Deshpande, P.M., et al.: On the computation of multidimensional aggregates. In: VLDB, Bombay, India, pp. 506–521 (1996)

    Google Scholar 

  3. Zhao, Y., Deshpande, P.M., Naughton, J.F.: An array-based algorithm for simultaneous multidimensional aggregates. In: SIGMOD, Tucson, Arizona, pp. 159–170 (1997)

    Google Scholar 

  4. Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation of iceberg cubes with complex measures. In: SIGMOD, Santa Barbara, CA, USA, pp. 1–12 (2001)

    Google Scholar 

  5. Xin, D., Han, J., Li, X., Wah, B.W.: Starcubing: Computing iceberg cubes by top-down and bottom-up integration. In: VLDB, Berlin, Germany, pp. 476–487 (2003)

    Google Scholar 

  6. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: SIGMOD, pp. 205–216 (1996)

    Google Scholar 

  7. Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: An effective approach to reducing data cube size. In: ICDE, Madison, Wisconsin, pp. 464–475 (2002)

    Google Scholar 

  8. Sismanis, Y., Roussopoulos, N., Deligianannakis, A., Kotidis, Y.: Dwarf: Shrinking the petacube. In: SIGMOD, pp. 564–475 (2002)

    Google Scholar 

  9. Lakshmanan, L.V.S., Pei, J., Han, J.: Quotient cube: How to summarize the semantics of a data cube. In: VLDB, Hong Kong, China, pp. 778–789 (2002)

    Google Scholar 

  10. Peng, Z., Li, Q., Feng, L., et al.: Using Object Deputy Model to Prepare Data for Data Warehousing. TKDE 17(9), 1274–1288 (2005)

    Google Scholar 

  11. Li, X.L., Han, J.W., Gonzalez, H.: High-Dimensional OLAP:A Minimal Cubing Approach. In: VLDB, Toronto, Canada, pp. 528–539 (2004)

    Google Scholar 

  12. Sismanis, Y., Roussopoulos, N.: The dwarf data cube eliminates the high dimensionality curse. TR-CS4552, University of Maryland (2003)

    Google Scholar 

  13. Wu, M.C., Buchmann, A.P.: Encoded bitmap indexing for data warehouses. In: ICDE, Orlando, Florida, USA, pp. 220–230 (1998)

    Google Scholar 

  14. Chan, C.Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: SIGMOD, Seattle, Washington, pp. 355–366 (1998)

    Google Scholar 

  15. KDD CUP 1999 Data (1999), http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leng, F., Bao, Y., Yu, G., Wang, D., Liu, Y. (2006). An Efficient Indexing Technique for Computing High Dimensional Data Cubes. In: Yu, J.X., Kitsuregawa, M., Leong, H.V. (eds) Advances in Web-Age Information Management. WAIM 2006. Lecture Notes in Computer Science, vol 4016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11775300_47

Download citation

  • DOI: https://doi.org/10.1007/11775300_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35225-9

  • Online ISBN: 978-3-540-35226-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics