Abstract
The computation of a data cube is one of the most essential but challenging issues in data warehousing and OLAP. Partition based algorithm is one of the efficient methods to compute data cubes on high dimensionality, low cardinality, and moderate size datasets, which exist in real applications like bioinformatics, statistics, and text processing. To deal with such high dimensional data cubes, we propose an efficient indexing technique consisting of a compressed bitmap index and two algorithms for cube constructing and querying. Experimental results show that our method saves at least 25% on storage space and about 30% on computation time compared with the Frag-Cubing algorithm.
Supported by the National Natural Science Foundation of China under Grant No.60473073, 60503036, 60573090.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chaudhuri, S., Dayal, U.: An Overview of Data Warehousing and OLAP Technology. SIGMOD 26(1), 65–74 (1997)
Agarwal, S., Agrawal, R., Deshpande, P.M., et al.: On the computation of multidimensional aggregates. In: VLDB, Bombay, India, pp. 506–521 (1996)
Zhao, Y., Deshpande, P.M., Naughton, J.F.: An array-based algorithm for simultaneous multidimensional aggregates. In: SIGMOD, Tucson, Arizona, pp. 159–170 (1997)
Han, J., Pei, J., Dong, G., Wang, K.: Efficient computation of iceberg cubes with complex measures. In: SIGMOD, Santa Barbara, CA, USA, pp. 1–12 (2001)
Xin, D., Han, J., Li, X., Wah, B.W.: Starcubing: Computing iceberg cubes by top-down and bottom-up integration. In: VLDB, Berlin, Germany, pp. 476–487 (2003)
Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cubes efficiently. In: SIGMOD, pp. 205–216 (1996)
Wang, W., Lu, H., Feng, J., Yu, J.X.: Condensed cube: An effective approach to reducing data cube size. In: ICDE, Madison, Wisconsin, pp. 464–475 (2002)
Sismanis, Y., Roussopoulos, N., Deligianannakis, A., Kotidis, Y.: Dwarf: Shrinking the petacube. In: SIGMOD, pp. 564–475 (2002)
Lakshmanan, L.V.S., Pei, J., Han, J.: Quotient cube: How to summarize the semantics of a data cube. In: VLDB, Hong Kong, China, pp. 778–789 (2002)
Peng, Z., Li, Q., Feng, L., et al.: Using Object Deputy Model to Prepare Data for Data Warehousing. TKDE 17(9), 1274–1288 (2005)
Li, X.L., Han, J.W., Gonzalez, H.: High-Dimensional OLAP:A Minimal Cubing Approach. In: VLDB, Toronto, Canada, pp. 528–539 (2004)
Sismanis, Y., Roussopoulos, N.: The dwarf data cube eliminates the high dimensionality curse. TR-CS4552, University of Maryland (2003)
Wu, M.C., Buchmann, A.P.: Encoded bitmap indexing for data warehouses. In: ICDE, Orlando, Florida, USA, pp. 220–230 (1998)
Chan, C.Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: SIGMOD, Seattle, Washington, pp. 355–366 (1998)
KDD CUP 1999 Data (1999), http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leng, F., Bao, Y., Yu, G., Wang, D., Liu, Y. (2006). An Efficient Indexing Technique for Computing High Dimensional Data Cubes. In: Yu, J.X., Kitsuregawa, M., Leong, H.V. (eds) Advances in Web-Age Information Management. WAIM 2006. Lecture Notes in Computer Science, vol 4016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11775300_47
Download citation
DOI: https://doi.org/10.1007/11775300_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35225-9
Online ISBN: 978-3-540-35226-6
eBook Packages: Computer ScienceComputer Science (R0)