Abstract
In this paper, we address the topic of monogenic curvature scale-space. Combining methods of tensor algebra, monogenic signal and quadrature filter, the monogenic curvature signal, as a novel model for intrinsically two-dimensional (i2D) structures, is derived in an algebraically extended framework. It is unified with a scale concept by employing damped spherical harmonics as basis functions. This results in a monogenic curvature scale-space. Local amplitude, phase and orientation, as independent local features, are extracted. In contrast to the Gaussian curvature scale-space, our approach has the advantage of simultaneous estimation of local phase and orientation. The main contribution is the rotationally invariant phase estimation in the scale-space, which delivers access to various phase-based applications in computer vision.
This work was supported by German Research Association (DFG) Graduiertenkolleg No. 357 (DZ) and Grant So-320/2-3 (GS).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Costabile, M.F., Guerra, C., Pieroni, G.G.: Matching shapes: a case study in time varying images. Computer Vision, Graphics and Image Processing 29, 296–310 (1985)
Han, M.H., Jang, D.: The use of maximum curvature points for the recognition of partially occluded objects. Pattern Recognition 23, 21–33 (1990)
Liu, H.C., Srinath, M.D.: Partial classification using contour matching in distance transformation. IEEE Transactions on Pattern Analysis and Matchine Intelligence 12, 1072–1079 (1990)
Wang, H., Brady, M.: Real-time corner detection algorithm for motion estimation. Image and Vision Computing 13, 695–703 (1995)
Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centers of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305 (1987)
Köthe, U.: Integrated edge and junction detection with the boundary tensor. In: Proceeding of 9th Intl. Conf. on Computer Vision, vol. 1, pp. 424–431 (2003)
Krieger, G., Zetzsche, C.: Nonlinear image operators for the evaluation of local intrinsic dimensionality. IEEE Transactions on Image Processing 5 (1996)
Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. IEEE Proceedings 69, 529–541 (1981)
Mokhtarian, F., Suomela, R.: Curvature scale space for robust image corner detection. In: Proc. 14th International Conference on Pattern Recognition (ICPR 1998), vol. 2, pp. 1819–1821 (1998)
Mokhtarian, F., Bober, M.: Curvature scale space representation: theory, applications, and MPEG-7 standardization. Kluwer Academic Publishers, Dordrecht (2003)
Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: Shape representation and recognition through morphological curvature scale spaces. IEEE Trans. Image Processing 15, 331–341 (2006)
Bülow, T., Sommer, G.: Hypercomplex signals - a novel extension of the analytic signal to the multidimensional case. IEEE Transactions on Signal Processing 49, 2844–2852 (2001)
Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49, 3136–3144 (2001)
Felsberg, M.: Low-level image processing with the structure multivector. Technical Report 2016, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik (2002)
Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997)
Ablamowicz, R.: Clifford Algebras with Numeric and Symbolic Computations. Birkhäuser, Boston (1996)
Hestenes, D., Li, H., Rockwood, A.: Geometric computing with clifford algebras. In: Sommer, G. (ed.) New Algebraic Tools for Classical Geometry, pp. 3–23. Springer, Heidelberg (2001)
Sommer, G., Zang, D.: Parity symmetry in multi-dimensional signals. In: Proc. of the 4th International Conference on Wavelet Analysis and its Applications, Macao (2005)
Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)
Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, New Jersey (1971)
Sobczyk, G., Erlebacher, G.: Hybrid matrix geometric algebra. In: Li, H., Olver, P.J., Sommer, G. (eds.) IWMM-GIAE 2004. LNCS, vol. 3519, pp. 191–206. Springer, Heidelberg (2005)
Bracewell, R.: Fourier Analysis and Imaging. Kluwer Academic / Plenum Publishers, New York (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zang, D., Sommer, G. (2006). The Monogenic Curvature Scale-Space. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds) Combinatorial Image Analysis. IWCIA 2006. Lecture Notes in Computer Science, vol 4040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11774938_25
Download citation
DOI: https://doi.org/10.1007/11774938_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35153-5
Online ISBN: 978-3-540-35154-2
eBook Packages: Computer ScienceComputer Science (R0)