Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Monogenic Curvature Scale-Space

  • Conference paper
Combinatorial Image Analysis (IWCIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4040))

Included in the following conference series:

Abstract

In this paper, we address the topic of monogenic curvature scale-space. Combining methods of tensor algebra, monogenic signal and quadrature filter, the monogenic curvature signal, as a novel model for intrinsically two-dimensional (i2D) structures, is derived in an algebraically extended framework. It is unified with a scale concept by employing damped spherical harmonics as basis functions. This results in a monogenic curvature scale-space. Local amplitude, phase and orientation, as independent local features, are extracted. In contrast to the Gaussian curvature scale-space, our approach has the advantage of simultaneous estimation of local phase and orientation. The main contribution is the rotationally invariant phase estimation in the scale-space, which delivers access to various phase-based applications in computer vision.

This work was supported by German Research Association (DFG) Graduiertenkolleg No. 357 (DZ) and Grant So-320/2-3 (GS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Costabile, M.F., Guerra, C., Pieroni, G.G.: Matching shapes: a case study in time varying images. Computer Vision, Graphics and Image Processing 29, 296–310 (1985)

    Article  Google Scholar 

  2. Han, M.H., Jang, D.: The use of maximum curvature points for the recognition of partially occluded objects. Pattern Recognition 23, 21–33 (1990)

    Article  Google Scholar 

  3. Liu, H.C., Srinath, M.D.: Partial classification using contour matching in distance transformation. IEEE Transactions on Pattern Analysis and Matchine Intelligence 12, 1072–1079 (1990)

    Article  Google Scholar 

  4. Wang, H., Brady, M.: Real-time corner detection algorithm for motion estimation. Image and Vision Computing 13, 695–703 (1995)

    Article  Google Scholar 

  5. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centers of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305 (1987)

    Google Scholar 

  6. Köthe, U.: Integrated edge and junction detection with the boundary tensor. In: Proceeding of 9th Intl. Conf. on Computer Vision, vol. 1, pp. 424–431 (2003)

    Google Scholar 

  7. Krieger, G., Zetzsche, C.: Nonlinear image operators for the evaluation of local intrinsic dimensionality. IEEE Transactions on Image Processing 5 (1996)

    Google Scholar 

  8. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. IEEE Proceedings 69, 529–541 (1981)

    Article  Google Scholar 

  9. Mokhtarian, F., Suomela, R.: Curvature scale space for robust image corner detection. In: Proc. 14th International Conference on Pattern Recognition (ICPR 1998), vol. 2, pp. 1819–1821 (1998)

    Google Scholar 

  10. Mokhtarian, F., Bober, M.: Curvature scale space representation: theory, applications, and MPEG-7 standardization. Kluwer Academic Publishers, Dordrecht (2003)

    MATH  Google Scholar 

  11. Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: Shape representation and recognition through morphological curvature scale spaces. IEEE Trans. Image Processing 15, 331–341 (2006)

    Article  Google Scholar 

  12. Bülow, T., Sommer, G.: Hypercomplex signals - a novel extension of the analytic signal to the multidimensional case. IEEE Transactions on Signal Processing 49, 2844–2852 (2001)

    Article  MathSciNet  Google Scholar 

  13. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49, 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  14. Felsberg, M.: Low-level image processing with the structure multivector. Technical Report 2016, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik (2002)

    Google Scholar 

  15. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  16. Ablamowicz, R.: Clifford Algebras with Numeric and Symbolic Computations. Birkhäuser, Boston (1996)

    MATH  Google Scholar 

  17. Hestenes, D., Li, H., Rockwood, A.: Geometric computing with clifford algebras. In: Sommer, G. (ed.) New Algebraic Tools for Classical Geometry, pp. 3–23. Springer, Heidelberg (2001)

    Google Scholar 

  18. Sommer, G., Zang, D.: Parity symmetry in multi-dimensional signals. In: Proc. of the 4th International Conference on Wavelet Analysis and its Applications, Macao (2005)

    Google Scholar 

  19. Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  20. Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, New Jersey (1971)

    MATH  Google Scholar 

  21. Sobczyk, G., Erlebacher, G.: Hybrid matrix geometric algebra. In: Li, H., Olver, P.J., Sommer, G. (eds.) IWMM-GIAE 2004. LNCS, vol. 3519, pp. 191–206. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Bracewell, R.: Fourier Analysis and Imaging. Kluwer Academic / Plenum Publishers, New York (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zang, D., Sommer, G. (2006). The Monogenic Curvature Scale-Space. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds) Combinatorial Image Analysis. IWCIA 2006. Lecture Notes in Computer Science, vol 4040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11774938_25

Download citation

  • DOI: https://doi.org/10.1007/11774938_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35153-5

  • Online ISBN: 978-3-540-35154-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics